Biological Sensing of Polychlorinated Biphenyls by

Bioluminescence Zebrafish

HUNG Wing Yee

A thesis submitted in partial fulfillment of the requirements
for the degree of
Master of Philosophy

Principal Supervisor: Prof. Ken Yung Kin Lam

Hong Kong Baptist University

May 2010
Abstract

Zebrafish (*Danio rerio*) is a common species employed in assessment of water quality and is also a good model for toxicological studies. Polychlorinated biphenyls (PCBs) are environmental toxins and found in industrial wastes which cause contaminations to the global ecosystems. Recent researches also indicate that PCBs are potential neurotoxins. In the present study, transgenic zebrafishes were produced to investigate the possibility using these transgenic zebrafishes as biological sensors for PCB contamination and toxicology.

In the first part of experiments, transgenic zebrafishes were produced using a cytochrome P450 1A1-green fluorescent protein (CYP-GFP) construct. CYP is a key enzyme in degradation of PCBs. In the first part of experiments, the CYP-GFP construct was microinjected into the zebrafishes embryos at one-cell stage. The protein expression of GFP is then driven by the CYP1A1 promoter. The transgenic fish embryos showed low intensity of fluorescence under the confocal microscope. The GFP expressions were observed in liver, starting from 3dpf (days post fertilization). After exposure to polychlorinated biphenyls (PCBs), the intensity of green fluorescence increased significantly. The CYP1A was expressing as early as 3 hours of exposure.

Tyrosine hydroxylase (TH) catalyzed the first step of biosynthesis of catecholamine, in
which tyrosine is converted to dopa, and to dopamine. In the second part of experiments, the TH-GFP construct was microinjected into the zebrafish embryos instead. Signs of GFP were found as early as 24 hpf (hours post fertilization). The distribution of GFP was found to coincide with that of TH. When the transgenic fish were exposed to PCBs, green fluorescent signals reduction shows the depletion of dopaminergic neurons. The transgenic zebrafish works as a biomarker which allows live imaging and monitoring of aquatic contaminations of PCBs and related compounds and also their toxic mechanisms.

TH is therefore the biomarker of dopaminergic cells in the nervous system. Damages to dopaminergic neurons cause neuronal diseases such as Parkinson’s disease.
Table of Contents

Declaration i

Abstract ii

Acknowledgement iv

Table of content v

List of Tables xi

List of Figures xii

List of Abbreviation xiv

Chapter 1 Literature Review

1.1 Cytochrome P450 and its roles in metabolism of carcinogens 1

1.1.1 Aromatic Hydrocarbon Receptor and their roles as PAH 4

receptor 5

1.1.2 Cytochrome family 1, subfamily A, polypeptide 1 5

1.1.3 Interactions of CYP1A1 and AHR in carcinogenesis 6

1.2 Central Nervous System 8

1.2.1 Dopaminergic System 8

1.2.2 Tyrosine Hydroxylase 10

1.3 Zebrafishes are good model for study of toxicology 11

1.4 Polychlorinated biphenyls 15
1.4.1 Classification of PCBs
1.4.2 Metabolism of PCBs
1.4.3 PCB toxicity to fish
1.4.4 PCB toxicity to aquatic life
1.4.5 Neurotoxicity of PCBs
1.4.6 PCB neurotoxicity mechanism
1.4.7 Human impact of PCBs

1.5 Objectives of the present study

Chapter 2 Material and Methodology

2.1 Fish aquaculture
2.2 CYP-GFP Plasmid construction
2.3 TH-GFP Plasmid construction
2.4 Bacteria culture
2.5 Electrophoresis
2.6 Sequencing
2.7 Microinjection
2.8 Primary cell cultures
2.9 Transfection
2.10 PCB treatment
2.11 Live imaging

2.11.1 Development

2.11.2 PCB treatment monitoring

2.11.3 Primary cell cultures

2.12 Immunohistochemistry

Chapter 3 PCB Contamination Monitoring by Transgenic CYP-GFP Zebrafishes

3.1 Introduction

3.2 Objective

3.3 Experimental procedures

3.3.1 Plasmid construction

3.3.2 Microinjection

3.3.3 Development

3.3.4 Development of PCB toxic responses

3.3.5 Primary cell cultures

3.3.6 Transfection

3.3.7 PCB exposure to cell cultures

3.3.8 Immunohistochemistry
3.4 Result

3.4.1 Plasmid constructions

3.4.2 Toxicological effects of PCBs to CYP-GFP transfected fish liver cells

3.4.3 Development of zebrafish embryos after transfection

3.4.4 Immunohistochemistry

3.4.5 Time course of toxic responses of PCBs in transgenic zebrafish

3.4.6 Morphological changes of transgenic zebrafish after exposure to PCBs

3.4.7 CYP1A1-GFP expressions in response to PCB

3.5 Discussion

3.5.1 CYP1A1 as biomarker for water contamination

3.5.2 Comparison of live imaging with other assays on liver

3.5.3 Toxic responses of PCBs

3.5.4 GFP expression driven by CYP in zebrafishes and mammals

3.6 Conclusion
Chapter 4 Neurotoxicological effects of PCBs to dopaminergic system in transgenic zebrafish

4.1 Introduction 83

4.2 Objective 85

4.3 Experimental procedures 86

4.3.1 TH-GFP plasmid constructions 86

4.3.2 Microinjection 86

4.3.3 Development 86

4.3.4 PCB treatment monitoring 86

4.3.5 Immunohistochemistry 87

4.4 Results 88

4.4.1 Plasmid constructions 88

4.4.2 Development of zebrafish embryos after transfection 88

4.4.3 Exposure to PCBs diminished the level of TH-GFP expressions 90

4.5 Discussion 92

4.5.1. TH-GFP transfection is a good indicator for development of dopaminergic system in zebrafish 92
4.5.2. PCB exposures significantly damage dopaminergic system in zebrafish

4.6 Conclusion

Chapter 5 Summary and Conclusion

Appendices

List of References

Curriculum Vitae