Study of the Modulating Effects of Astragalus Saponins on Tumor Angiogenesis and Invasiveness in Colon Cancer Cells

LAW Pui Ching

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

Principal Supervisor: Dr. Joshua KO Ka Shun

Hong Kong Baptist University

June 2010
ABSTRACT

Colorectal cancer is prone to develop into invasive cancer, while metastatic development is the major cause of cancer-related deaths. Astragalus saponins (AST) exhibit anti-carcinogenic effects in various cancer cell lines in our previous studies. Our latest findings indicate that AST could suppress tumor growth in nude mice xenograft of HT-29 colon cancer cells. The results were comparable to the conventional chemotherapeutic drug 5-FU with fewer adverse effects. Here, we attempted to further explore the in vitro and in vivo effects of AST on colon tumor progression.

AST (80 μg/ml) significantly inhibited the growth of HCT 116 cells by 75% after 72 h of treatment. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are the key angiogenic growth factors for blood vessel formation and contribute to tumor angiogenesis. Matrix metallopeptidase, MMP-2 and MMP-9, which have been found to be elevated in colon cancer, are the collagen IV gelatinase responsible for the extracellular matrix (ECM) degradation that facilitate cell invasion. Our results revealed that AST could significantly downregulate the protein expression of these angiogenic factors and invasive molecules. Some signaling molecules involved in PI3K/AKT/mTOR pathway were also examined. AST increased PTEN expression, decreased the phosphorylation of Akt and its downstream target, mTOR. Rapamycin alone could reduce the protein expression of VEGF, bFGF, MMP-2 and MMP-9, while co-treatment of rapamycin and AST further decreased the expression. HIF-1α is the key transcriptional activator of the VEGF gene and will be elevated under hypoxic conditions. In cobalt chloride (II) (CoCl₂)-mimicked hypoxia, the induced HIF-1α and VEGF in HCT 116 cells could be suppressed by AST and the effect was intensified with rapamycin co-treatment. In HCT 116 xenografted nude mice model, tumor volume and
tumor weight were found to be reduced by 42.7% and 33.9%, respectively, by AST treatment when compared to the control group. AST was found to markedly reduce the serum level of VEGF when compared to the control group. Immunohistochemical staining of the tumor sections also showed decreased VEGF expression in AST-treated group. The chemotherapeutic drug vinblastine (VBL) has been widely used for treating different human cancers and exhibited potential anti-carcinogenic effects in colon cancer cells in our pilot study. The therapeutic effects of the combined use of AST and VBL on colon cancer development were also investigated in the present study. The anti-invasion effects of AST were demonstrated using LoVo metastatic colon cancer cells. The number of invaded cells was decreased by AST treatment by using the cell invasion assay. AST also increased the localization of cadherin-catenin complex at the cell membrane, indicating that AST might hinder cell invasion by increasing cell-cell interaction. A splenic liver metastasis animal model was used to study the anti-metastatic effects of AST. A smaller extent of metastases was observed in the liver in AST-treated mice when compared to that in control animals. AST could also downregulate the expression of various metastasis-associated proteins and genes in the tumor-bearing liver biopsy.

In conclusion, our results suggest that AST could attenuate tumor progression of colon cancer through inhibition of angiogenesis, probably via downregulation of the AKT/mTOR signaling and inhibition of invasion by modulating the invasive factors.
TABLE OF CONTENTS

DECLARATION... I

ABSTRACT.. II

ACKNOWLEDGEMENTS .. IV

TABLE OF CONTENTS.. V

LIST OF FIGURES ... VIII

LIST OF TABLES.. X

LIST OF ABBREVIATIONS ... XI

CHAPTER 1 INTRODUCTION..1

A. OVERVIEW OF COLON CANCER..1
 1. Epidemiology .. 1
 2. Pathogenesis .. 2
 3. Treatments .. 6
 3.1 Contemporary chemotherapy ... 7
 3.2 Chinese medicines as an alternative chemotherapeutic option .. 8

B. ANGIOGENESIS AND CANCER .. 10
 1. Tumor angiogenesis ... 10
 2. Involvement of mTOR signaling pathway in tumor angiogenesis ... 13
 3. Hypoxia and tumor angiogenesis ... 14

C. TUMOR CELL INVASION AND METASTASIS .. 17

D. RADIX ASTRAGALUS .. 20
 1. Description and uses in Traditional Chinese Medicine (TCM) .. 20
 2. Chemical constituents ... 21
 3. Pharmacology and contemporary clinical indications .. 24
 3.1 Pharmacological studies of Astragalus saponins ... 24
 3.2. Experimental findings on the anti-carcinogenic effects of Astragalus saponins 28
 3.3 Toxicology... 30

CHAPTER 2 MATERIALS AND METHODS ...31

A. MATERIALS ... 31

B. CELL LINES AND CELL CULTURE.. 34

C. DRUG TREATMENT .. 35

D. CELL VIABILITY STUDIES ... 36

E. WESTERN BLOT ANALYSIS .. 37
F. IMMUNOFLUORESCENCE STAINING .. 39
G. FLUORESCENCE-ACTIVATED CELL SORTER (FACS) ANALYSIS... 40
H. REVERSE TRANSCRIPTION PCR ... 41
I. IMMUNOPRECIPITATION .. 43
J. TUMOR XENOGRAFTS IN NUDE MICE... 44
K. IMMUNOHISTOCHEMICAL STAINING ... 45
L. BIOCHEMICAL ASSAYS (ELISA) ... 47
M. CELL INVASION ASSAY .. 48
N. WHITE BLOOD CELLS COUNT ... 49
O. STATISTICAL ANALYSIS .. 50

CHAPTER 3 RESULTS ... 51
A. EFFECTS OF AST ON HCT 116, DLD-1 AND LoVo CELL VIABILITY .. 51
B. WESTERN BLOT ANALYSIS OF ANGIOGENIC AND INVASIVENESS-RELATED PROTEINS IN HCT 116
 AND DLD-1 CELLS.. 55
C. EFFECT OF AST ON PI3K/AKT/mTOR PATHWAY IN HCT 116 CELLS ... 60
 1. Effect of AST on different signaling molecules involved in PI3K/AKT/mTOR pathway................. 60
 2. Additional inhibitory effect of co-treatment of AST and rapamycin in HCT 116 cells on bFGF, VEGF, MMP-2 and MMP-9 .. 62
D. ANTI-ANGIOGENIC EFFECTS OF AST ON HCT 116 CELLS UNDER HYPOXIA 64
 1. Study of HIF-1α and VEGF expression under CoCl₂-mimetic hypoxic condition 64
 2. Combined effect of AST and rapamycin on HIF-1α and VEGF under CoCl₂-mimetic hypoxic
 condition ... 67
E. COMBINED EFFECTS OF AST AND CHEMOTHERAPEUTIC DRUGS ON COLON CANCER 69
 1. Study of the combined effects of AST and VBL on the growth and apoptosis of HCT 116 cells ... 69
 2. Study of the combined effect of AST and VBL on the angiogenic and invasive factors in HCT
 116 cells ... 74
 3. Combined effects of AST and chemotherapeutic drugs on anti-angiogenesis in nude mice
 xenograft using HCT 116 cells ... 76
 3.1 Effects of AST and chemotherapeutic drugs on tumor growth inhibition in HCT 116 xenografted nude
 mice ... 76
 3.2 Effects of AST and chemotherapeutic drugs on VEGF in HCT 116 xenografted nude mice 82
 3.3 Hematopoietic Effect of AST and chemotherapeutic drugs on Total White Blood Cells (WBC) 86
F. INHIBITION OF LoVo CELL INVASIVENESS .. 88
 1. Invasion assay ... 88
 2. Effect on cell adhesion .. 88
G. ANTI-METASTATIC EFFECT OF AST IN A SPLENIC LIVER METASTASIS MODEL 91
H. EFFECTS OF AST ON THE SMAD SIGNALING PATHWAY .. 94

CHAPTER 4 DISCUSSION ... 97
CHAPTER 5 PROSPECTIVE WORKS ...110

A. FURTHER INVESTIGATION OF THE ANTI-INVASIVE AND ANTI-METASTATIC EFFECTS OF AST ON
 COLON CANCER ...110

B. PROTEOMIC ANALYSIS OF METASTATIC-ASSOCIATED PROTEINS IN AST-TREATED CELLS111

REFERENCES ...112

PUBLICATIONS AND CONFERENCES ...127

CURRICULUM VITAE ...128