Numerical Simulations of the Steady Euler Equations on Unstructured Grids

HU Guanghui

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Principal Supervisor: Prof. TANG Tao

Hong Kong Baptist University

December 2009
Abstract

This thesis concerns with effective and robust numerical schemes for solving the steady Euler equations. For solving the nonlinear system resulting from the discretization of the steady Euler equations, we employ a standard Newton method as the outer iterative scheme and a linear multigrid method as the inner iterative scheme with the block lower-upper symmetric Gauss-Seidel iteration as its smoother. The Jacobian matrix of the Newton-iteration is regularized by the local residual, instead of using the commonly adopted time-stepping relaxation technique based on the local CFL number. The local Jacobian matrix of the numerical fluxes are computed by numerical differentiation, which can significantly simplify the implementations by comparing with the manually derived approximate derivatives.

In the reconstruction step, the linear reconstruction and the quadratic reconstruction are studied, respectively. For the linear reconstruction, the approximate polynomial in each cell is obtained by using the WENO reconstruction method. Numerical results demonstrate that the algorithm works very well with the WENO reconstruction. Compared with the results given by using the Venkatakrishnan limiter, the WENO reconstruction method gives superior convergence order, and non-oscillatory and sharp shock profiles. Although the WENO method works very well for the linear case, the convergence to the steady state of the algorithm is affected if the WENO method is extended to the quadratic case directly. So for the quadratic reconstruction, a new hierarchical WENO reconstruction method is introduced to improve the convergence to steady state and also to preserve the formal order of accuracy. Efforts are made to balance the convergence order of the numerical dis-
cretization, the ability of avoiding the non-physical oscillations, and the efficiency of the Newton-iteration.

The last part of the thesis concerns with using the h-adaptive technique to enhance the performance of the proposed numerical algorithms. Numerical results show that, with the h-adaptive methods, the grids around the shock regions are locally refined successfully, which can save a large amount of computational time and memory.
Table of Contents

Declaration i

Abstract ii

Acknowledgements iv

Table of Contents vi

List of Tables ix

List of Figures x

Chapter 1 Introduction 1

 1.1 The Euler Equations 2
 1.2 The Mesh 5
 1.3 The Finite Volume Method 7
 1.3.1 Solution Reconstruction 11
 1.3.2 Slope Limiter Methods 13
 1.3.3 ENO/WENO Reconstruction 14
 1.3.4 The HLLC Riemann Solver 16
 1.4 The Residual Distribution Method 18
 1.5 Temporal Discretization 19
 1.6 Some Acceleration Techniques 19
 1.6.1 Local Time-Stepping 20
 1.6.2 The Multigrid Method 20
Chapter 2 The Linear Finite Volume Solver
2.1 The Finite Volume Discretization for the Steady Euler Equations
2.2 The Reconstruction and Limiting Strategies
 2.2.1 The Linear Reconstruction
 2.2.2 The Venkatakrishnan Limiter
 2.2.3 The WENO Reconstruction
2.3 Newton Iteration
 2.3.1 The Jacobian of the Numerical Flux
 2.3.2 Regularization
2.4 Multigrid Method
 2.4.1 The Projection Operator
 2.4.2 The Smoother
2.5 Boundary Condition
 2.5.1 Solid Wall Boundary Condition
 2.5.2 Farfield Boundary Condition
2.6 Numerical Results
 2.6.1 Numerical Convergence Tests
 2.6.2 The Robustness of the Algorithm
 2.6.3 Remarks on the Efficiency of the Algorithm
2.7 Conclusion Remarks

Chapter 3 The Quadratic Solver Based on the Residual Distribution Schemes
3.2.2 Implementation of the Hierarchical Reconstruction for Steady Problems .. 78

3.3 Remarks on the Curved Boundary .. 81

3.4 Numerical Results ... 84

3.4.1 Numerical Convergence Tests 85

3.4.2 Robustness .. 99

3.5 Conclusion Remarks ... 103

Chapter 4 Combination with the Adaptive Techniques 106

4.1 Moving Finite Element Method for the Simulation of Gravity Fingers in Porous Media .. 107

4.1.1 Finite Element Discretization ... 108

4.1.2 Moving Mesh Strategy .. 109

4.1.3 Numerical Results ... 111

4.2 h-Adaptive Method .. 114

4.2.1 Mesh Refinement and Coarsening 115

4.2.2 Remarks on the Weight in the Reconstruction 120

4.2.3 Numerical Results ... 120

4.3 Conclusion Remarks ... 122

Chapter 5 Concluding Remarks 134

Bibliography 137

Curriculum Vitae 147