Charge Injection, Transport and Thin Film Transistor
Applications of Phenylamine-Based Organic Semiconductors

CHEUNG Chi Hang

A thesis submitted in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Principal Supervisor: Dr. SO Shu Kong
Hong Kong Baptist University
June 2009
Abstract

This thesis presents the charge injection and transport properties of amorphous organic semiconductors. Understanding these two properties is of vital importance for improving the performance of organic optoelectronic devices, which are receiving wide recognition in the past decade. Four techniques were cross-examined in this thesis for studying the properties, namely, time-of-flight (TOF), current-voltage (J-V), dark-injection space-charge-limited current (DI-SCLC), and thin film transistor (TFT) techniques. The materials under investigation belong to the family of phenylamine-based (PA) compounds, i.e. N,N'-diphenyl -N,N'-bis (1-naphthyl) (1,1'biphenyl) 4,4’diamine (NPB) and 4,4’,4’’-tris(n-(2-naphthyl) -n-phenyl-amino) triphenylamine (2TNATA). With high lying highest occupied molecular orbital (HOMO) level of -5.4eV, NPB was used for the charge injection analysis.

For charge injection, transition metal oxides (TMOs) were used as the hole injection layer (HILs) for NPB. We demonstrated the injection performance of TMO/NPB contact was significantly improved upon oxygen exposure to the TMO films. For J-V experiment, nearly overlap between the measured and theoretical J-V curves can be observed from the samples with oxygen exposed TMOs. Moreover, clear DI-SCLC transient peaks were observed over a wide range of electric fields from the samples. The two features cannot be observed from the samples with no gas exposed TMOs. This indicated TMOs with oxygen exposure can form nearly Ohmic contact with NPB, while the TMOs with no gas exposure cannot. The improvement was attributed to a reduction in the energy barrier at TMO/NPB interface, which was a consequence of the work function enhancement of TMO by the oxidation of oxygen. To demonstrate the importance of TMO as HILs on improving the performance of organic electronic devices, TMOs were introduced into NPB based organic thin film transistors (OTFTs). The insertion of TMO between Au and NPB in the OTFTs improved their performance.

For charge transport, an OTFT configuration was used to be a tool for carrier mobility evaluation in amorphous organic semiconductors. NPB and 2TNATA were the
target amorphous organic materials for investigation. The field effect (FE) mobility was found to about one order of magnitude smaller than that obtained from independent time-of-flight (TOF) technique using a thick film of \(\sim \mu \text{m} \). Independent \(J-V \) experiments showed that contact effect was not the origin of the discrepancy. Temperature dependent measurements were carried out to study the energetic disorder of the material. It was found that the energetic disorder increased in the neighborhood of a gate dielectric layer and was one of the origins causing the discrepancy between TFT and TOF mobilities.
Table of contents

Declaration i
Abstract ii
Acknowledgements iv
Table of contents vi
List of figures x
List of tables xviii

Chapter 1 Introduction 1

Chapter 2 Fundamentals 11
2.1 Fundamentals of organic semiconductors 11
 2.1.1 Structure and electronic properties of organic semiconductors 11
 2.1.2 Charge conduction mechanism 15
 2.1.2A Hopping conduction 15
 2.1.2B Poole-Frenkel (PF) Model 17
 2.1.2C Gaussian disorder model (GDM) 19
 2.1.3 Charge injection mechanism 23
 2.1.3A Electronic properties of organic/metal interface (OMI) 23
 2.1.3B Thermionic emission 29
 2.1.3C Tunneling 31
 2.1.4 Current voltage ($J-V$) characteristics of organic semiconductors 32
 2.1.4A Space-charge-limited current (SCLC) 32
 2.1.4B Dark-injection space-charge-limited current (DI-SCLC) transient 38
2.2 Fundamentals of transition metal oxides (TMOs) 43
 2.2.1 Electronic properties and charge conduction of TMOs 43
 2.2.2 Defects and non-stoichiometry 47
2.3 Fundamentals of organic thin film transistors (OTFTs) 50
 2.3.1 Structure and working principle of OTFTs 50
 2.3.2 Parameters extraction 56
 2.3.3 Contact effect 59
 2.3.4 Charge transport 61

Chapter 3 Experimental details

3.1 Material preparation 71
 3.1.1 Materials used for characterization 71
 3.1.2 Material purification 72

3.2 Sample preparation 74
 3.2.1 Substrate preparation 74
 3.2.1A Substrates of samples for time-of-flight (TOF),
 Current-voltage (J-V) and dark-injection space-charge
 -limited current (DI-SCLC) measurements 74
 3.2.1B Substrates of samples for organic thin film transistors
 (OTFTs) 75
 3.2.2 Thin film deposition 76
 3.2.2A Spin coating 76
 3.2.2B Thermal evaporation 78
 3.2.2C Shadow masks for sample preparation 80

3.3 Sample measurement 82
 3.3.1 Time-of-flight (TOF) measurement 82
 3.3.2 Current voltage (J-V) measurement 85
 3.3.3 Dark-injection space-charge-limited current (DI-SCLC)
 measurement 87
 3.3.4 Organic thin film transistors (OTFTs) 90
Chapter 4 Transition metal oxides (TMOs) as the hole injecting materials for phenylamine-based (PA) compound

4.1 Introduction 94
4.2 Experimental details 97
4.3 Results and discussion 102
 4.3.1 Mobility evaluation and transport parameters extraction by TOF 102
 4.3.2 Different injection anodes for NPB 104
 4.3.3 Role of air exposure in the improvement of injection efficiency of TMO/NPB contact 108
 4.3.3A J-V analysis 108
 4.3.3B DI-SCLC analysis 112
 4.3.3C Origin of energy barrier reduction by oxygen exposure 115
 4.3.4 Improving the injection efficiency of TMO/NPB contact by annealing in air 121
4.4 Conclusion 126

Chapter 5 Application of transition metal oxides (TMOs) in organic thin film transistors (OTFTs)

5.1 Introduction 129
5.2 Experimental details 131
5.3 Results and discussion 133
 5.3.1 Output characteristics of NPB based OTFTs 133
 5.3.2 Transfer characteristics of NPB based OTFTs 137
 5.3.3 Investigation of injection behavior at Au/NPB contact by J-V experiment 141
5.4 Conclusion 144
Chapter 6 Using thin film transistor (TFT) to quantify carrier transport properties of phenylamine-based compounds

6.1 Introduction 147
6.2 Experimental details 150
6.3 Results and discussion 154
 6.3.1 Mobility evaluation by TOF experiment 154
 6.3.2 Mobility evaluation by OTFT experiment 156
 6.3.3 Investigation of contact effect by J-V and DI-SCLC experiments 160
 6.3.4 Investigation of gate dielectric perturbation effect on the PA compounds by temperature dependent measurement 165
 6.3.5 Extraction of energetic disorder introduced by gate dielectric 172
 6.3.6 High temperature limit of carrier mobility (μ_∞) 174
6.4 Conclusion 175

Chapter 7 Conclusions 178

Curriculum Vitae 182