Transport and Device Application of Triarylamine-based Organic Semiconductor

TSUNG Ka Kin

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

Principal Supervisor: Dr. SO Shu Kong

Hong Kong Baptist University

January 2009
Abstract

This thesis presents the charge transport properties and device application of triarylamine-based organic semiconductors. The hole and electron mobilities of N,N'-diphenyl-N,N'-bis (1-naphthyl) (1,1'-biphenyl)- 4,4’diamine (NPB), a key hole transporter in organic electronics, was extracted by time-of-flight (TOF) technique. In general, NPB has a stronger electron conducting capability than hole. The charge conducting ability of NPB in relation to the Marcus theory from quantum chemistry will be discussed. The study was further investigated by using doping. Some general observations on the effects of dopants on the hole transport properties in NPB will be explored. To demonstrate the presence of electron transport in NPB, a NPB single layer Organic light emitting diode (OLED) was fabricated. By doping NPB with different RGB fluorescent dyes, the device performance has notable improvement. The doping effects on the device performance will also be analyzed.

Another well-recognized hole transporter N,N'-diphenyl-N,N'-bis(3-methylphenyl) -(1,1’-biphenyl)-4,4’-diamine (TPD) was employed to fabricate OLEDs with single and bilayer structures. Doping technique was again adopted to improve the device performance. The thickness of the doped layer was tuned for optimization. To further improve the device thermal durability, a higher glass transition temperature (T_g) spiro-linked compound, spiro-TPD, was employed to replace TPD as the active material. The details of the spiro-linked compound and the device performance of spiro-TPD based OLEDs will also be presented.
Table of contents

Declaration ... a
Abstract.. ii
Acknowledgements .. iii
Table of contents .. iv
List of Tables ... vii
List of Figures.. vii

Chapter 1 Introduction ... 1
 1.1 Historical background of organic electronics ... 1
 1.2 Applications of electroluminescent organic material 2
 1.3 Characterization of organic semiconductor .. 5
 1.4 Research focus ... 8
Chapter 1 References ... 10

Chapter 2 Basic theories/principles... 12
 2.1 Charge conduction in organic semiconductor 12
 2.1.1 Charge transport mechanism .. 12
 2.1.2 Poole-Frenkel model ... 14
 2.1.3 Gaussian disorder model (GDM) ... 16
 2.1.4 Charge injection in organic semiconductor 18
 2.2 Effect of dopant on charge transport from a theoretical point of view ... 21
 2.2.1 Classical work of Hoesterey and Letson 21
 2.2.2 Effective medium approach (EMA) .. 24
 2.3 Fundamentals of organic light emitting diodes (OLEDs) 28
 2.3.1 Working principle of OLEDs .. 28
 2.3.2 Energy transfer ... 31
 2.3.2.1 Förster energy transfer .. 31
 2.3.2.2 Dexter energy transfer .. 33
Chapter 2 References ... 36
Chapter 3 Experimental details ... 38
 3.1 Material purification .. 38
 3.2 Sample preparation ... 40
 3.2.1 Substrate pre-treatment ... 40
 3.2.2 Film deposition .. 41
 3.2.3 Spin coating of PEDOT:PSS .. 42
 3.3 Characterization apparatus and technique 44
 3.3.1 Mobility measurement: Time-of-flight (TOF) technique 44
 3.3.1.1 Introduction .. 44
 3.3.1.2 Operating principle and experimental setup 45
 3.3.1.3 Transient signal analysis .. 47
 3.3.1.4 Hole and electron mobility measurement 49
 3.3.1.5 Charge generation layer ... 51
 3.3.1.6 Selection of the sensing resistor R 55
 3.3.2 Characterization of OLEDs ... 57
 Chapter 3 References .. 59

Chapter 4 Charge transport properties of undoped and doped triarylamine
(NPB) films .. 61
 4.1 Hole transport in undoped and doped NPB 62
 4.1.1 Introduction .. 62
 4.1.1.1 Background and motivation .. 62
 4.1.1.2 Concept of carrier trap and scatterer 63
 4.1.2 Experimental ... 64
 4.1.2.1 Choice of dopants ... 64
 4.1.2.2 TOF sample structures .. 66
 4.1.3 Results and discussion ... 67
 4.1.3.1 Doping effects on hole mobility of NPB 67
 4.1.3.2 Gaussian disorder model (GDM) analysis 71
 4.1.3.3 High temperature limit of carrier mobility 77
 4.1.4 Conclusion .. 84
 4.2 Electron transport in NPB .. 85
 4.2.1 TOF electron mobility measurements 85