Role of Epidermal Growth Factor Receptor (EGFR) and Mitogen-activated Protein Kinases (MAPKs) Signaling Pathways in Zn-BC-AM Photodynamic Therapy-induced Apoptosis of the Well-differentiated Nasopharyngeal Carcinoma Cells

KOON Ho Kee

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Prof. MAK Nai Ki
Hong Kong Baptist University
February 2009
ABSTRACT

Nasopharyngeal carcinoma (NPC) has a high prevalence in Hong Kong, southern China and Southeast Asia. Due to the complexity of the disease, new treatment methods for locoregionally advanced or metastatic NPC are currently under development. Photodynamic therapy (PDT), a recently developed method for effective treatment for cancer, may be used as an alternative to treat the recurrent and advanced NPC. In the present study, the biological actions of Zinc (II) 2,3,8,8,12,13,17,18-octaethylbenzochlorin amidinium salt (Zn-BC-AM) PDT on the well differentiated NPC cells were investigated.

Zn-BC-AM PDT was found to induce irreversible cell death of the well differentiated HK-1 NPC cells. Zn-BC-AM PDT was found to activate the intrinsic apoptotic cell death pathway and the sequence of activation included the induction of mitochondrial membrane potential depolarization, externalization of phosphatidylserine, proteolytic cleavage of caspase-9 and -3, chromatin condensation and formation of apoptotic cells. The expression of anti-apoptotic proteins Bcl-2/ Bcl-xL was decreased immediately after Zn-BC-AM PDT treatment while the expression of pro-apoptotic proteins Bax/ Bid was not affected. Addition of singlet oxygen (\(1^O_2\)) scavenger L-histidine or overexpression of Bcl-2 was found to reduce Zn-BC-AM PDT-induced apoptosis, indicating that the apoptotic process was initiated through the generation of \(1^O_2\) and Bcl-2 appeared to play a cyto-protective role in retarding the cell death process.

Combination therapy with anti-epidermal growth factor receptor (EGFR) drug (or anti-EGFR antibody) and chemoradiotherapy is emerging as a novel approach for treatment of advanced NPC patients. We hypothesized that inhibition of EGFR signaling pathway might also increase the efficacy of Zn-BC-AM PDT in HK-1 cells. It is found that EGFR, Akt and ERK were constitutively activated in HK-1 cells and the activities could be inhibited by EGFR inhibitor AG1478. Inhibition of EGFR, Akt or ERK by their specific inhibitors was found to enhance Zn-BC-AM PDT-induced formation of apoptotic cells and reduced the expression of Bcl-2. The results indicate that the efficacy of Zn-BC-AM PDT may further be increased through the inhibition of EGFR signaling pathways in NPC cells.

Mitogen-activated protein kinases (MAPKs) are a group of protein kinase highly sensitive to oxidative stress. The role of MAPKs in Zn-BC-AM PDT-induced HK-1 cell death was also investigated. Zn-BC-AM PDT was found to induce persistent activation of p38 MAPK and JNK, while ERK was transiently activated after PDT treatment. Inhibition of JNK with SP600125 had no effect on Zn-BC-AM PDT-induced cell death. Transient genetic knock down of specific p38 isoforms with siRNA revealed that inhibition of p38\(\beta\) but not p38\(\alpha\) nor p38\(\delta\) would increase Zn-BC-AM PDT-induced cell death and apoptosis. Zn-BC-AM PDT-activated p38\(\beta\) appears to play a role to counteract the PDT-induced cell death.

Pro-inflammatory cytokines and chemokines produced by PDT-treated tumour have been implicated to play a role in the indirect tumour destruction. Using ELISA method, we found that PDT induced the production of IL-1\(\alpha\) and IL-1\(\beta\). In contrast, IL-8 (a cytokine with both neutrophil chemotact and angiogenic activities) was
downregulated in HK-1 cells at 24 hours after Zn-BC-AM PDT, suggesting that Zn-BC-AM PDT might indirectly reduce tumour growth through the reduction of tumour angiogenesis.

In conclusion, multiple signaling pathways are involved in Zn-BC-AM PDT-induced apoptosis of HK-1 cells. Combination therapy with Zn-BC-AM PDT and EGFR/MAPKs inhibitors may further be developed for the treatment of advanced NPC.
Chapter 1 .. 1

Literature Review .. 1

1.1 Photodynamic Therapy ... 1
 1.1.1 Introduction .. 1
 1.1.2 Photosensitizers .. 3
 1.1.2.1 An Ideal Photosensitizer .. 3
 1.1.2.2 Development of Photosensitizers .. 4
 1.1.3 Photochemistry and Photophysics .. 5
 1.1.4 Light Source and Delivery for PDT .. 7
 1.1.5 Effects of PDT on Tumour .. 8
 1.1.5.1 Direct Tumour Cell Damage ... 8
 1.1.5.2 Vasculature Damage ... 9
 1.1.5.3 Activation of Immune Response ... 9

1.2 Overview of Cell Death ... 10
 1.2.1 Apoptosis .. 10
 1.2.1.1 Caspases Activation ... 11
 1.2.1.2 Extrinsic Apoptotic Pathway .. 12
 1.2.1.3 Intrinsic Apoptotic Pathway .. 12
1.2.1.4 Cross-talk between Extrinsic and Intrinsic Apoptotic Pathways ... 13
1.2.1.5 Bcl-2 Family Proteins ... 13
1.5.1.6 Caspase-independent Apoptosis .. 14
1.5.1.7 Induction of Apoptosis as a Strategy for Cancer Treatment .. 15
1.2.2 Necrosis .. 15
1.2.3 Autophagy .. 16

1.3 EGFR and MAPKs Signaling Pathways in Cancers 17
1.3.1 Epidermal Growth Factor Receptor (EGFR) Signaling Pathways 17
 1.3.1.1 Ras/ERK .. 18
 1.3.1.2 PI3K/Akt ... 18
 1.3.1.3 JAK/STAT .. 19
 1.3.1.4 Association of EGFR Signaling to Cancers 19
 1.3.2 Mitogen-activated Protein Kinase (MAPKs) Signaling Pathways 20
 1.3.2.1 p38 MAPK .. 21
 1.3.2.2 c-Jun N-terminal Kinases (JNK) ... 22
 1.3.2.3 Extracellular Signal Regulated Protein Kinases (ERK) 22
 1.3.2.4 MAPKs Signaling Pathways as Chemotherapeutic Targets .. 23

1.4 Nasopharyngeal Carcinoma (NPC) ... 23
1.4.1 Epidemiology of NPC ... 23
1.4.2 Classification .. 24
1.4.3 Aetiology .. 24
 1.4.3.1 Environmental Factors .. 24
 1.4.3.2 Genetic Factors .. 25
 1.4.3.3 Latent Infection with Epstein Barr Virus (EBV) 25
1.4.4 Molecular Alternations of Apoptosis and Growth Signalings in NPC... 26
 1.4.4.1 Bcl-2 ... 26
 1.4.4.2 EGFR .. 27
1.4.5 PDT on NPC .. 28

1.5 Aims and Scopes of the Studies .. 28
Materials and Methods

2.1 Materials

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>Photosensitizer</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Cell Lines</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Reagents for Cell Culture</td>
</tr>
<tr>
<td>2.1.3.1</td>
<td>Fetal Bovine Serum (FBS)</td>
</tr>
<tr>
<td>2.1.3.2</td>
<td>Antibiotics</td>
</tr>
<tr>
<td>2.1.3.3</td>
<td>Roswell Park Memorial Institute (RPMI) Medium 1640</td>
</tr>
<tr>
<td>2.1.3.4</td>
<td>Trypsin-EDTA (1X)</td>
</tr>
<tr>
<td>2.1.3.5</td>
<td>Dulbecco’s Phosphate Buffered Saline (PBS)</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Fluorescent Probes for Organelle Localization</td>
</tr>
<tr>
<td>2.1.4.1</td>
<td>Mitochondrial Probe</td>
</tr>
<tr>
<td>2.1.4.2</td>
<td>Endoplasmic Reticulum Probe</td>
</tr>
<tr>
<td>2.1.4.3</td>
<td>Lysosome Probe</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Reagents for the Determination of Cell Viability</td>
</tr>
<tr>
<td>2.1.5.1</td>
<td>Trypan Blue Staining Dye</td>
</tr>
<tr>
<td>2.1.5.2</td>
<td>Propidium Iodide (PI) Staining Solution</td>
</tr>
<tr>
<td>2.1.5.3</td>
<td>Crystal Violet Staining Dye (0.5%)</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Fluorescent Probe for Reactive Oxygen Species (ROS) Detection</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Antioxidants</td>
</tr>
<tr>
<td>2.1.7.1</td>
<td>L-histidine</td>
</tr>
<tr>
<td>2.1.7.2</td>
<td>D-mannitol</td>
</tr>
<tr>
<td>2.1.7.3</td>
<td>N-acetyl-L-cysteine (NAC)</td>
</tr>
<tr>
<td>2.1.8</td>
<td>Reagents for Determination of Mitochondrial Functions</td>
</tr>
<tr>
<td>2.1.8.1</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT) Solution</td>
</tr>
<tr>
<td>2.1.8.2</td>
<td>Ethyl Ester Tetramethylrhodamine (TMRE) Solution</td>
</tr>
<tr>
<td>2.1.9</td>
<td>Reagents for Annexin V Binding Assay</td>
</tr>
<tr>
<td>2.1.9.1</td>
<td>AnnexinV-FITC</td>
</tr>
<tr>
<td>2.1.9.2</td>
<td>Binding Buffer</td>
</tr>
<tr>
<td>2.1.10</td>
<td>Reagents for Nuclear Staining</td>
</tr>
</tbody>
</table>
2.1.11 Pharmacological Inhibitors ... 42

2.1.12 Reagents for Transient Transfections ... 43
 2.1.12.1 Transfecting Agent ... 43
 2.1.12.2 Bcl-2 pcDNA3 Plasmid .. 43
 2.1.12.3 Small-interfering RNA (siRNA) ... 43

2.1.13 Reagents for Total Cell Lysates Extraction 43
 2.1.13.1 Tris-HCl (pH 8.0) ... 43
 2.1.13.2 Sodium Chloride (NaCl) Solution .. 43
 2.1.13.3 Cell Lysis Buffer ... 44
 2.1.13.4 Phosphatase Inhibitor .. 44
 2.1.13.5 Protease Inhibitor ... 44
 2.1.13.6 Cell Lysis Buffer Working Solution .. 44

2.1.14 Reagents for Protein Determination .. 44

2.1.15 Reagents and Materials for Western Blotting 44
 2.1.15.1 30% Acrylamide/bis Solutions .. 45
 2.1.15.2 1.5 M Tris-HCl (pH 8.8) .. 45
 2.1.15.3 0.5 M Tris-HCl (pH 6.8) .. 45
 2.1.15.4 10% Sodium Dodecyl Sulfate (SDS) Solution 45
 2.1.15.5 10% Ammonium Persulphate (APS) Solution 45
 2.1.15.6 N, N', N'-tetramethylethylenediamine (TEMED) 45
 2.1.15.7 SDS Sample Buffer (5X) ... 46
 2.1.15.8 Protein Sample Markers .. 46
 2.1.15.9 Electrode Buffer ... 46
 2.1.15.10 Transblotting Buffer .. 46
 2.1.15.11 PolyScreen® Polyvinylidene Fluoride (PVDF) Hybridization Transfer Membrane ... 47
 2.1.15.12 Filter Paper and Transblotting Fiber Pads 47
 2.1.15.13 Tris Buffered Saline (TBS) (10X) ... 47
 2.1.15.14 Tris Buffered Saline-Tween 20 (TBST) (1X)........................... 48
 2.1.15.15 5% Non-fat Milk Blotto .. 48
 2.1.15.16 Stripping Buffer ... 48
 2.1.15.17 Chemiluminescent Detection Reagent 48
 2.1.15.18 X-ray Film .. 48
 2.1.15.19 Developer and Fixer .. 48
2.1.16 Antibodies for Western Blotting ... 49
 2.1.16.1 Primary Antibodies .. 49
 2.1.16.2 Secondary Antibodies ... 49

2.1.17 Reagents for Reverse Transcriptase - Polymerase Chain Reaction (RT-PCR) .. 49
 2.1.17.1 Reagents for RNA Extraction ... 49
 2.1.17.2 Reagents for First-strand DNA (cDNA) Preparation 50
 2.1.17.3 Reagents for PCR ... 50
 2.1.17.4 Reagents for DNA Gel Electrophoresis 51
 2.1.17.5 Ethidium Bromide Solution .. 51

2.1.18 Human Cytokines ELISA Kits ... 51

2.2 Methods .. 52
 2.2.1 Cell Cultures ... 52
 2.2.2 Trypan Blue Exclusion Method .. 52
 2.2.3 Cellular Uptake of Zn-BC-AM ... 53
 2.2.4 Determination of Subcellular Localization of Zn-BC-AM 53
 2.2.5 PDT Treatment of NPC Cells ... 54
 2.2.6 Determination of Cell Viability .. 54
 2.2.6.1 PI Exclusion Assay .. 54
 2.2.6.2 Clonogenicity Assay ... 55
 2.2.7 Detection of ROS Production ... 55
 2.2.8 Determination of Mitochondrial Function .. 56
 2.2.8.1 MTT Assay ... 56
 2.2.8.2 Detection of Mitochondrial Membrane Potential
 Depolarization .. 57
 2.2.9 Annexin V Binding Assay .. 57
 2.2.10 Transient Transfection ... 58
 2.2.10.1 Plasmid DNA Transfection ... 58
 2.2.10.2 siRNA Transfection ... 58
 2.2.11 Western Blotting ... 59
 2.2.11.1 Total Cell Lysates Preparation and Protein Extraction 59
 2.2.11.2 Protein Determination ... 59
 2.2.11.3 Preparation of Loading Samples .. 60
2.2.11.4 Sodium Dodecyl Sulfate-Polyacrylamide Gels

Electrophoresis (SDS-PAGE) ... 60

2.2.11.5 Transblotting of Protein to Membrane 61

2.2.11.6 Antibody Probing ... 61

2.2.11.7 Stripping and Re-probing ... 62

2.2.11.8 Analysis of Protein Band Intensity 62

2.2.12 Nuclear Staining .. 62

2.2.13 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 62

2.2.14 Cytokine ELISA Analysis .. 63

2.2.15 Statistical Analysis .. 63

Chapter 3 .. 72

Characterization of Cell Death Induced by Zn-BC-AM PDT in HK-1 Cells ... 72

3.1 Introduction .. 72

3.2 Results .. 73

3.2.1 Cellular Uptake of Zn-BC-AM by HK-1 Cells 73

3.2.2 Subcellular Localization of Zn-BC-AM in HK-1 Cells 73

3.2.3 Induction of Cell Death by Zn-BC-AM PDT 74

3.2.4 Changes in Nuclear Morphology after Zn-BC-AM PDT 75

3.2.5 Disruption of Mitochondrial Membrane Potential and Inhibition of Mitochondrial Enzyme Activities .. 76

3.2.6 Externalization of Phosphatidylserine 77

3.2.7 Western Blotting Analysis of Caspase Activation 77

3.2.8 Expression of Bcl-2 Family Proteins in Zn-BC-AM PDT-treated HK-1 Cells .. 77

3.2.9 Involvement of ROS in Zn-BC-AM PDT-induced Cell Death 78

3.2.10 Effects of L-histidine on Zn-BC-AM PDT-induced Cell Death 78

3.2.11 Effects of L-histidine on Zn-BC-AM PDT-induced Apoptosis 79
3.2.12 L-histidine Attenuated the Loss of Anti-apoptotic Bcl-2 Family Proteins ... 79

3.2.13 Effects of Overexpression of Bcl-2 on Zn-BC-AM PDT-induced Cell Death .. 80

3.3 Discussion ... 81

3.3.1 Mode of Zn-BC-AM PDT-induced Cell Death ... 81

3.3.2 Role of Bcl-2 and Other Bcl-2 Family Proteins in Zn-BC-AM PDT-induced Cell Death .. 84

Chapter 4 ... 114

EGFR Inhibitor Enhances Zn-BC-AM PDT-induced Apoptosis in HK-1 Cells 114

4.1 Introduction ... 114

4.2 Results ... 115

4.2.1 Effects of EGFR Inhibitor AG1478 on HK-1 Cells ... 115

4.2.2 Effects of EGFR Inhibition on Akt, ERK Phosphorylation in HK-1 Cells 115

4.2.3 Effects of AG1478 on Zn-BC-AM PDT–treated HK-1 Cells 116

4.2.4 Enhancement of Zn-BC-AM PDT-induced Apoptosis by AG1478..... 117

4.2.5 Effects of AG1478 and Zn-BC-AM PDT on Akt and ERK Protein Expressions .. 117

4.2.6 Effects of Pharmacological Inhibition of EGFR Downstream Pathways on Zn-BC-AM PDT-induced Cell Death in HK-1 Cells 118

4.2.7 Effects of Inhibition of EGFR, PI3K/Akt and MEK/ERK Pathways on the Zn-BC-AM PDT-induced Apoptosis .. 118

4.3 Discussion .. 119

4.3.1 EGFR Inhibitor Enhances Zn-BC-AM PDT-induced Apoptosis in HK-1 Cells .. 119
4.3.2 Involvement of PI3K/Akt and MEK/ERK Pathways in Zn-BC-AM PDT-induced Apoptosis .. 120
4.3.3 Bcl-2 is the Target of EGFR and Zn-BC-AM PDT 122

Chapter 5 .. 140

Role of Mitogen-activated Protein Kinase (MAPKs) Signaling Pathways in Zn-BC-AM PDT-induced Apoptosis on HK-1 Cells 140

5.1 Introduction .. 140
5.2 Results .. 141
 5.2.1 Zn-BC-AM PDT Induced Activation of MAPKs 141
 5.2.2 Effects of Pharmacological Inhibitors on Zn-BC-AM PDT-induced Cell Death .. 141
 5.2.3 Effects of Pharmacological Inhibitors on the Formation of Apoptotic Cells ... 142
 5.2.4 Effects of p38 MAPK Inhibitors on Colony Formation 142
 5.2.5 Effects of Genetic Knockdown of p38 MAPK Isoforms on Zn-BC-AM PDT-induced Cell Death 143
 5.2.6 Effects of Genetic Knockdown of p38 MAPK Isoforms on Zn-BC-AM PDT-induced Apoptosis .. 143
5.3 Discussion... 145
 5.3.1 Activation of MAPKs by Zn-BC-AM PDT 145
 5.3.2 Role of p38 MAPK Isoforms in Zn-BC-AM PDT-treated HK-1 Cells .. 147
 5.3.3 Protective Effects of PD169316 ... 148

Chapter 6 .. 164

Zn-BC-AM PDT-induced Production of Cytokines by Epstein-Barr Virus-infected HK-1 Cells ... 164
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>164</td>
</tr>
<tr>
<td>6.2</td>
<td>Results</td>
<td>165</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Effects of Zn-BC-AM PDT on the Growth of HK-1-EBV Cells</td>
<td>165</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Expression of Cytokines mRNA in Zn-BC-AM PDT-treated NPC Cells</td>
<td>165</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Zn-BC-AM PDT Up-regulated Production of IL-1</td>
<td>166</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Production of IL-1β is Mediated via Interleukin-1β Converting Enzyme (ICE)/ Caspase-1 Independent Mechanism</td>
<td>166</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Detection of IL-6 Production in HK-1 and HK-1-EBV Cells</td>
<td>167</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Inhibition of IL-8 Production by Zn-BC-AM PDT</td>
<td>167</td>
</tr>
<tr>
<td>6.3</td>
<td>Discussions</td>
<td>167</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Effect of Zn-BC-AM PDT on the Expression and Production of IL-1 in HK-1 and HK-1-EBV Cells</td>
<td>167</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Downregulation of IL-8 in Zn-BC-MA PDT-treated NPC Cells</td>
<td>169</td>
</tr>
<tr>
<td>7.1</td>
<td>General Discussions</td>
<td>178</td>
</tr>
<tr>
<td>7.2</td>
<td>Summary</td>
<td>179</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Zn-BC-AM PDT Induced Apoptosis in HK-1 Cells</td>
<td>180</td>
</tr>
<tr>
<td>7.2.2</td>
<td>The Efficacy of Zn-BC-AM PDT in HK-1 Cells Could be Enhanced through the Inhibition of the EGFR Signaling Pathways</td>
<td>181</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Contributions of MAPKs Signaling in Zn-BC-AM PDT</td>
<td>181</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Modulation of Pro-inflammatory Cytokines and Chemokines by Zn-BC-AM PDT</td>
<td>182</td>
</tr>
<tr>
<td>7.3</td>
<td>Perspectives</td>
<td>182</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Other Potential Mechanisms Involved in Zn-BC-AM PDT-induced Apoptosis</td>
<td>182</td>
</tr>
</tbody>
</table>
7.3.2 Studies on the Effects of EGFR Inhibition \it{in vivo} 183
7.3.3 Modulation of Pro-inflammatory Cytokines and Chemokines by MAPKs Signaling ... 183
7.3.4 Identification of PD169316-sensitive Pathway(s) in Zn-BC-AM PDT-induced Cell Death ... 184

REFERENCES .. 186

LIST OF PUBLICATIONS ... 213

CURRICULUM VITAE ... 214