Application of Differential Proteomic Strategies to
Investigate the Anti-cancer Effects of *Gynostemma pentaphyllum*
Saponins in Rat 6 Fibroblast Cell System

WU Pui Kei

A thesis submitted in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Principal Supervisor: Prof. HSIAO Wen-Luan, Wendy

Hong Kong Baptist University

March 2009
ABSTRACT

Gynostemma pentaphyllum (Gp), also known as Jiaogulan, is a popular Chinese medicinal herb and health supplement. Gp is rich in triterpenoid saponins (over 100 gypenosides were identified) and regarded as a complex drug system. Their anti-inflammatory and anti-cancer activities were documented in various reports. Studies in our laboratory showed that total saponins from Gp effectively inhibit the growth of tumor cells in the presence of co-cultivated normal cells. The co-culture model mimics the development of tumor in vivo. Animal studies in our laboratory revealed the chemotherapeutic and chemopreventive potential of Gp saponins. The Gp saponins were able to substantially reduce the number of polyps in the Min/+ mice that are predisposed to colon cancer.

In the previous investigation of our laboratory, Raf-1 protein kinase, a component of the Ras-Raf-Erk MAPK signal transduction pathway, was discovered as a potential molecular target of Gp saponins. The present study further demonstrated that Gp saponins induce the degradation of Raf-1 protein via the proteasome machinery. In addition, evidence shown that Gp saponins may exert inhibitory effect on Heat shock protein 90 leading to the dissociation of Raf-1 protein from the chaperone complex, and proteosomal degradation of the unprotected Raf-1 protein.

Today, there are sweet and bitter taste variants of Gp in the market. However, information on the chemical and biological properties between the sweet and the bitter taste variants is limited. The presence study investigated the chemical constituents and anti-cancer activities of eleven Gp saponins obtained from different regions of growth in China. They were subdivided according to the taste (sweet/bitter/unspecified) of herbs. The saponin fingerprints were performed by HPLC-UV and LC-ESI-MS methods. Their anti-cancer effects were assessed by co-culture assay. Data showed that by HPLC chromatography in conjunction with ESI/MS analysis, the sweet and bitter taste variants of Gp are clearly differentiated and display strikingly different in their chemical constituents. The two taste groups display distinct and non-overlapping gypenosides profiles between sweet and bitter taste Gp herbs. The differences are reflected both in the complexity and constituents of the total saponins. Results showed that all of the samples from the sweet taste Gp and two of the bitter taste Gp exhibited the growth inhibitory effect within a non-toxic dosages assessed by the co-culture assay. The sweet taste Gp showed broader dosage margin between the desired anti-cancer effect and the toxic effect. The distinct and unique saponin profile of
different Gp variants may direct the biological activity. The combination of the chemical and biological analysis in the present work provides useful information for the quality assessment of Gp products.

The anti-cancer mechanism of Gp saponins is remained elusive. In order gain further insight of the underlying mechanism of the drug, especially the possible signaling cascade involved, the effect of Gp saponins on the phosphoproteome in R6 cells was investigated. Two strategies were employed in the present study to profile the differential phosphoproteome in the early event of Gp saponins treatment on R6 cells: two dimensional gel electrophoresis (2-DE) with immunodetection using phosphotyrosine- and phosphoserine/threonine-specific antibodies; a combined strategy comprising phosphoprotein enrichment, SILAC, and time course analysis. In total, we have identified 72 altered phosphoproteins responding to Gp treatment. Integrating the data obtained from these experiments, bioinformatics-assisted analysis revealed that a number of interaction networks with distinct function were involved. Gp saponins may modulate the glycolysis and TCA cycle via phosphorylation-dependent functional regulation of enzymes involved in the pathways. Gp saponins may also down-regulate the MAPK/Erk signaling pathway through hypophosphorylation of PLCβ3, MEK-1, PP1A and ROCK2. In addition, the protein translation and synthesis machinery may be regulated by Gp saponins through activation of eEF2. Finally, we observed the changes of phosphorylation of FBP aldolase, G3PDH, PEA-15, PLCβ3, citrate synthase and hnRNP A1. These protein molecules are known to be regulated by the CaMK and PKA family. This observation poses the potential effect of Gp saponins on CaMK and PKA.

In summary, this study provides new information on the chemical constituents and biological activities of Gp variants. It will benefit quality control and drug safety of a daily consumed health supplement. This study also provides new insight into mechanisms responsible for part of the Gp saponins activities. Application of the state-of-the-art proteomics technology was demonstrated to be an advantageous approach for system biology research of Chinese medicine.
TABLE OF CONTENTS

DECLARATION ..i
ABSTRACT ..ii
ACKNOWLEDGEMENTS ..iv
TABLE OF CONTENTS ...v
LIST OF TABLES ...xi
LIST OF FIGURES ...xii
LIST OF ABBREVIATIONS ...xv

CHAPTER 1 INTRODUCTION ..1
1.1 Cancer and cancer therapy ...2
 1.1.1 Cancer treatment and prevention ...2
 1.1.1.1 Western medical approaches – principle and clinical practice2
 1.1.1.2 Cancer treatment by traditional Chinese medicines – theory and practice .4
1.2 Gynostemma pentaphyllum, a traditional Chinese medicinal herb7
 1.2.1 Gynostemma pentaphyllum used as a folk medicine7
 1.2.2 Authentication of Gp ..7
 1.2.3 Chemical characteristics of Gp ...8
 1.2.4 Gp saponins ...9
 1.2.4.1 General chemical properties of saponins ..9
 1.2.4.2 Chemical properties of Gp saponins ..10
 1.2.4.3 Pharmacological activities of Gp saponins ..13
 1.2.5 Anti-cancer effects of Gp saponins ..13
 1.2.6 Quality assessment of Gp active ingredients ..14
1.3 R6 and R6/GFP-Ras cells co-culture system as screening tools for potential anti-cancer natural products ...15
 1.3.1 Assessment of anti-cancer activities of Ganoderma lucidum and Tricholoma lobayense using the co-culture cell model ...15
 1.3.2 Assessment of anti-cancer activities of Oldenlandia diffusa16
 1.3.3 Assessment of anti-cancer activities of Gp saponins16
1.4 Proteomic technology: basic principle and equipment involved17
 1.4.1 Protein separation techniques for proteomic analysis17
 1.4.1.1 Two-dimensional gel electrophoresis ...17
1.4.1.2 Strong cation exchange liquid chromatography..20
1.4.1.3 Nano-scale reverse phase liquid chromatography..................................21
1.4.2 Biological mass spectrometry...22
1.4.2.1 Matrix assisted laser desorption/ionization time-of-flight mass spectrometry.................................23
1.4.2.2 Electrospray ionization..24
1.4.2.3 Ion trap mass spectrometry...26
1.4.2.4 Quadruple time-of-flight mass spectrometry...27
1.4.2.5 Fourier transform ion cyclotron resonance mass spectrometry...........27
1.4.2.6 Orbitrap mass spectrometry...28
1.4.3 Protein identification..28
1.4.3.1 Peptide mass fingerprinting...29
1.4.3.2 Amino acid sequence analysis by tandem mass spectrometry............29
1.4.4 Quantitative mass spectrometry...33
1.4.4.1 Isotope-coded affinity tag..34
1.4.4.2 Stable isotope labeling with amino acids in cell culture....................34

1.5 Functional phosphoproteomics: an important tools for signal transduction and cancer research...36
1.5.1 Sample preparation and the underlying rationales..................................36
1.5.2 Phosphoprotein specific staining..37
1.5.3 Immunoprecipitation of phosphoproteins...37
1.5.4 Immobilized metal affinity chromatography...38

1.6 The role of MAPK signaling pathways in carcinogenesis..........................39
1.6.1 Raf family is the immediate down-stream effector kinase of ras oncogene..40
1.6.2 Targeting Raf family in cancer therapeutics..40

1.7 Current works on the anti-cancer effects of Gp saponins...........................41
1.7.1 Growth inhibitory effect on ras-transformed cells of Gp saponins require the presence of co-cultivated normal cells...41
1.7.2 Raf-1 and MAPK/Erk signaling pathway are molecular target of Gp saponins...41
1.7.3 Suppression of glycolytic and energy metabolic gene products by Gp saponins..42

1.8 Project aims...42
CHAPTER 2 ELUCIDATION OF THE UNDERLYING MECHANISM OF RAF-1 DEGRADATION INDUCED BY GP SAPONINS ... 44
2.1 Introduction .. 45
2.2 Materials and methods .. 46
2.2.1 Preparation of Gp total saponins 46
2.2.2 Cell lines and growth medium ... 47
2.2.3 Cell culture and conditions ... 47
2.2.4 Protein extraction ... 47
2.2.5 Immunoprecipitation .. 48
2.2.6 Western blot analysis .. 48
2.3 Results ... 49
2.3.1 Gp saponins-induced Raf-1 degradation may involve proteasome machinery .. 49
2.3.2 Inhibitory effect of Gp saponins on HSP-90 complex formation .. 53
2.4 Discussion ... 56

CHAPTER 3 COMPARISONS OF THE CHEMICAL PROFILE AND ANTI-CANCER ACTIVITIES OF THE SWEET AND BITTER TASTE VARIETIES OF GYNOSTEMMA PENTAPHYLLUM ... 58
3.1 Introduction .. 59
3.2 Materials and methods .. 60
3.2.1 Preparation and source of Gp total saponins 60
3.2.2 High-performance liquid chromatography (HPLC) analysis 63
3.2.3 Similarity analysis of chromatographic patterns 63
3.2.4 ESI quadrupole time-of-flight mass spectrometry 63
3.2.5 Compound identification and qualitative analysis 64
3.2.6 Colony formation and co-culture assays 64
3.2.7 Data analysis ... 65
3.3 Results ... 65
3.3.1 Chemical fingerprinting of Gp saponins using HPLC-UV chromatography .. 65
3.3.2 Qualitative analysis of Gp saponins using HPLC-ESI-MS 68
CHAPTER 4 ANALYSIS OF PHOSPHOPROTEIN PROFILE OF R6 CELLS TREATED WITH GP SAPONINS USING 2D GEL ELECTROPHORESIS COUPLED WITH WESTERN BLOT ANALYSIS

4.1 Introduction

4.2 Materials and methods

4.2.1 Cell culture conditions

4.2.2 Total protein extraction

4.2.3 Two-dimensional gel electrophoresis

4.2.4 Silver staining

4.2.5 Western blot analysis of 2-DE

4.2.6 Colloidal gold staining

4.2.7 Image analysis and statistical analysis

4.2.8 MALDI-ToF mass spectrometry

4.2.9 Peptide mass fingerprinting and amino acid sequence analysis

4.3 Results

4.3.1 Detection of altered phosphorylation pattern upon Gp saponins treatment using western blot analysis

4.3.2 Profiling of Tyr-phosphorylated protein of R6 cells upon Gp saponins treatment

4.3.3 Profiling of Ser/Thr-phosphorylated protein of R6 cells upon Gp saponins treatment

4.4 Discussion

CHAPTER 5 QUANTITATIVE PHOSPHOPROTEOME PROFILING OF R6 CELLS TREATED WITH GP SAPONINS BY SILAC AND LC-MS/MS

5.1 Introduction

5.1.1 Coupling SILAC with LC-MALDI mass spectrometry

5.1.2 Ion suppression effect of tryptic digest in MALDI-ToF MS

5.1.3 Lys-C endoproteinase as an alternative to trypsin

5.1.4 Objectives
6.4 Discussion...163

CHAPTER 7 CONCLUSIONS..175
7.1 Effects of Gp saponins on the stability of the Raf-1/HSP90 protein complex...176

7.2 Sweet and bitter taste variants of Gp have distinct and non-overlapping gypenoside profiles...176

7.3 Optimization of LC-MALDI-MS protein quantification using Lys-C endoproteinase for protein digestion...177

7.4 Protein-protein interaction network regulated by Gp saponins are unveiled through the bioinformatics analysis...178

7.5 The pros and cons of the two strategies employed to investigate the phosphoproteom of R6 cells in responding to Gp treatment.................................180

APPENDICES...185
LIST OF REFERENCES..197
LIST OF PUBLICATIONS...230
PRESENTATIONS AND ABSTRACTS...231
CURRICULUM VITAE..232