Enhanced Bioremediation of Waterlogged Soil Contaminated with Phenanthrene and Pyrene Using Wetland Plant and PAH-degrading Bacteria

GAO Yan

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Prof. WONG Ming Hung

Hong Kong Baptist University

April 2008
Abstract

The present study aims to investigate the interactions of PAH-degrading bacteria (*Acinetobacter* sp.) and higher plant (*Oryza sativa* L.) on enhancing bioremediation of PAH-contaminated waterlogged soil.

The growth of *Oryza sativa* was adversely affected by 200+200 mg kg\(^{-1}\) phenanthrene (PHE) and pyrene (PYR), with significant decreases of chlorophyll content and shoot and root biomass. *Oryza sativa* was able to regulate the elevation of superoxide dismutase (SOD) activities and water-soluble protein (WSP) content to counteract the intracellular overproduction of reactive oxygen species (ROS) under PAH stress. *Acinetobacter* sp. alleviated the toxic effects caused by PAHs on rice growth, and even stimulated the growth of rice by increasing its chlorophyll content and biomass. Addition of *Oryza sativa* root exudates or extracts stimulated the growth of *Acinetobacter* sp. substantially on the mixtures of PHE and PYR in both liquid cultures and waterlogged soil, which may be beneficial to maintaining *Acinetobacter* sp. population during the remediation process.

In soil microcosms containing *Oryza sativa* and *Acinetobacter* sp., interactions between *Oryza sativa* and *Acinetobacter* sp. greatly accelerated the dissipation of PYR from waterlogged soil, when compared with microcosms containing *Oryza sativa* or *Acinetobacter* sp. alone. In addition to stimulating microbial degradation of PAHs, *Oryza sativa* would also enhance PAH dissipation
through elevating peroxidase activities in soil. Root exudates contributed to the formation of dissipation gradients of PHE and PYR along vertical directions of roots, with the highest dissipation in the rhizosphere and near rhizosphere zone. Dissolved organic carbon (DOC) was one of the major factors affecting PAHs dissipation rates of soil in rhizosphere and near rhizosphere zone. In addition to providing a favorable rhizosphere environment for PAH degradation, *Oryza sativa* roots accumulated PHE and PYR through adsorption and absorption. Using a sequential extraction method, it was found that PAHs were more easily absorbed into the interior rice roots than being adsorbed on root surface. Butanol-extractable PHE and PYR in rhizospheric soil were significantly (p<0.05) correlated with their corresponding concentrations in rice roots, indicating the feasibility of using butanol-extractable PAHs for estimating availability of PAHs.

The present results indicated that there is a potential for developing a plant-assisted bioremediation system containing PAH-degrading bacteria and wetland plant to clean up PAHs-contaminated waterlogged soil.
Table of Contents

Declaration.. i
Abstract .. ii
Acknowledgements ... iv
Table of Contents ... v
List of Tables.. x
List of Figures ... xii
List of Appendices ... xiv
Abbreviations and Acronyms.. xv

Chapter 1 General Introduction.. 1
 1.1 Background of Research .. 1
 1.2 Literature Review ... 3
 1.2.1 PAH Characteristics that Influence their Environmental Fate 3
 1.2.2 PAH Bioavailability and Assessment ... 5
 1.2.3 PAH Degradation by Bacteria: Implication for Bioremediation 7
 1.2.4 Plant-enhanced PAH Biodegradation: Implication for Phytoremediation 12
 1.2.5 Phytoremediation Strategies for PAHs-contaminated Soil or Sediment 15
 1.2.6 Interactions Occurring during Phytoremediation of PAHs-contaminants Soil/sediment 18
 1.2.6.1 Effects of Soil Properties on PAHs, Microorganisms and Plants 18
 1.2.6.2 Effects of PAHs on Soil, Microorganisms and Plants 20
 1.2.6.3 Effects of Microorganisms on PAHs, Soil and Plants 21
 1.2.6.4 Effects of Plants on Soil, Microorganisms and PAHs 23
 1.2.6.5 Summary of Interactions ... 24
 1.3 Objective of Research ... 26
 1.4 Contributions and Significance of the Present Research 27
 1.5 Framework of Research .. 28

Chapter 2 Utilization of the Mixtures of Phenanthrene and Pyrene by Isolated PAH-degrading Bacteria and the Influence of Exudates and Extracts of Rice Root ... 30
 2.1 Introduction .. 30
 2.2 Materials and Methods .. 32
 2.2.1 Isolation of PAH-degrading Bacteria ... 32
 2.2.2 Preparation of Exudates and Extracts of Rice Root 33
 2.2.3 Bacteria Growth on Root Products and Degradation of PHE and/or PYR in Liquid Culture .. 36
2.2.4 Preparation of PHE and PYR Contaminated Soil.................................37
2.2.5 Degradation of the mixtures of PHE and PYR by *Acinetobacter* sp. in Soil...38
2.2.6 PAH Extraction and Analysis...40
2.2.7 Quality control ..41
2.3 Results...41
 2.3.1 Growth of *Acinetobacter* sp. on PHE and/or PYR, and Root Exudates or Extracts in Liquid Cultures.................................41
 2.3.2 Utilization of PHE or/and PYR by *Acinetobacter* sp. in the Liquid Cultures...42
 2.3.3 Growth of *Acinetobacter* sp. in PHE and PYR Contaminated Soil and the Influence of Root Exudates or Extracts44
 2.3.4 Utilization of the Mixtures of PHE and PYR by *Acinetobacter* sp. in Soil Containing Different Water Contents..................................44
 2.3.5 Utilization of the Mixtures of PHE and PYR by *Acinetobacter* sp. under the Influence of Root Exudates or Extracts47
2.4 Discussion...51
2.5 Conclusion ..56

Chapter 3 Biological Responses of Rice to Phenanthrene and Pyrene Toxicity under the Influence of PAH-degrading Bacteria.................58
 3.1 Introduction...58
 3.2 Materials and Methods...60
 3.2.1 Preparation of PHE and PYR Contaminated Soil.................................60
 3.2.2 Seed Germination and Early Seedling Growth Microbiotest60
 3.2.3 Isolation and Inoculation of PAH-degrading Bacteria..........................61
 3.2.4 Growth and Development of Rice in PAHs-contaminated Soil............63
 3.2.5 Biological Parameter Measurement..64
 3.2.6 Statistical Analyses ...65
 3.3 Results..65
 3.3.1 Seed Germination, Root and Shoot Elongation of Rice using PHYTOTOXKIT™...65
 3.3.2 The Effects of Spiked PAHs and Inoculated Bacteria on Rice Yield...67
 3.3.3 Chlorophyll Content and Chlorophyll a/b Ratio....................................67
 3.3.4 Soluble Carbohydrate, Soluble Protein and SOD Activity70
 3.4 Discussion..70
 3.4.1 The effects of PAHs on rice growth ...70
 3.4.2 Stress Tolerance of Rice to PHE and PYR in Soil.........................75
 3.4.3 Effects of PAH-degrading Bacteria on Rice Growth and Adaptation to PAHs Stress ...77
 3.5 Conclusion ..79

Chapter 4 Interactions of Rice (*Oryza sativa* L.) and PAH-degrading Bacteria (*Acinetobacter* sp.) on Enhanced Dissipation of Spiked Phenanthrene and Pyrene in Waterlogged Soil...............................80
Chapter 4: Effects of PAH-degrading Bacteria on the Bioavailability of Phenanthrene and Pyrene in Waterlogged Soil

4.1 Introduction

4.2 Materials and Methods

- 4.2.1 Chemicals
- 4.2.2 Preparation of PHE and PYR Contaminated Soil
- 4.2.3 Isolation and Inoculation of PAH-degrading Bacteria
- 4.2.4 Enumeration of PAH-degrading Bacteria
- 4.2.5 Experimental Design
- 4.2.6 Chemical Analyses
- 4.2.7 Peroxidase Activity
- 4.2.8 Quality Control
- 4.2.9 Statistical Analyses

4.3 Results

- 4.3.1 Initial Concentrations of Extractable PAHs in Soil
- 4.3.2 The Effects of Rice and Spiked PAHs on Bacterial Population
- 4.3.3 PHE and PYR Concentrations in Rice Roots and Shoots
- 4.3.4 Peroxidase activity in soil
- 4.3.5 Residual Concentrations of Extractable PAHs in Rhizospheric and Non-rhizospheric Soil
- 4.3.6 DOC Contents in Rhizospheric and Non-rhizospheric Soil

4.4 Discussion

- 4.4.1 The Effects of Rice and PAHs on Bacterial Population
- 4.4.2 The Effects of Rice on Peroxidase Activity in soil
- 4.4.3 The Concentrations of PAHs in Shoots and Roots of Rice
- 4.4.4 Promoted Dissipation of PAHs from Soil as Affected by Interactions between Bacteria and Rice

4.5 Conclusions

Chapter 5: Effects of PAH-degrading Bacteria (Acinetobacter sp.) and Wetland Plant (Oryza sativa L.) on the Bioavailability of Phenanthrene and Pyrene in Waterlogged Soil

5.1 Introduction

5.2 Materials and Methods

- 5.2.1 Preparation of PHE and PYR Contaminated Soil
- 5.2.2 Source and Inoculation of PAH-degrading Bacterium
- 5.2.3 Experimental Design
- 5.2.4 Chemical Analyses
- 5.2.5 Statistical Analyses

5.3 Results

- 5.3.1 Effects of Contact Time and PAH-concentrations on Butanol Extractable PHE and PYR
- 5.3.2 Effects of Rice and PAH-degrading Bacteria on Butanol Extractable PHE and PYR
- 5.3.3 Correlations among Butanol Extractability, PAH-dissipation, Rice Accumulation of PAHs and Soil DOC Content
5.4 Discussion ...125
 5.4.1 Effects of Contact Time and Concentrations on PHE and PYR Availability ...125
 5.4.2 Effects of Rice and PAH-degrading Bacteria on Bbutanol Extractable PHE and PYR...127
 5.4.3 Butanol Extractability and PAH Availability ...130
5.5 Conclusion ..132

Chapter 6 Dissipation Gradients of Aged Phenanthrene and Pyrene in Waterlogged Soil under the Influence of Rice Roots and Root Exudates ...134
6.1 Introduction ...134
6.2 Materials and Methods ..136
 6.2.1 Preparation Contaminated Soil with Aged Residues of PHE and PYR ..136
 6.2.2 Inoculation of PAH-degrading Bacteria ..137
 6.2.3 Rice Seedlings ...137
 6.2.4 Experiment Design ..137
 6.2.5 Chemical Analyses ..139
 6.2.6 Statistical Analyses ...143
6.3 Results ...143
 6.3.1 PHE and PYR Concentration in Soil Pore Water143
 6.3.2 DOC and Its Correlation with PHE and PYR in Soil Pore Water145
 6.3.3 Residual PHE and PYR Concentrations in S1, S2 and S3145
 6.3.4 PAH Concentrations across Rice Roots ..150
 6.3.5 Correlations between Methanol- or Soxhlet-PAHs of Roots and PAHs in Soil Pore Water or PAHs Dissipation Rates in Soil153
6.4 Discussion ...153
 6.4.1 PAHs Solubility in Soil Pore Water ..153
 6.4.2 Adsorption and Absorption of PAHs by Roots158
 6.4.3 Effects of Roots and Root Exudates on Formation of \nPAH-dissipation Gradients in Soil ...160
6.5 Conclusion ..163

Chapter 7 General Discussion and Major Conclusion ...165
7.1 Introduction ...165
7.2 Growth of Oryza sativa and Acinetobacter sp. in PAHs-contaminated Soil 169
7.3 Interactions between Acinetobacter sp. and Oryza sativa on Enhanced Dissipation of PAHs ..172
7.4 Effects of Oryza sativa and Acinetobacter sp. on PAH Availability in Waterlogged Soil ...175
7.5 Accumulation of PAHs by Oryza sativa Roots ..177
7.6 General Conclusion ...179
7.7 Future Work ..180
7.7.1 Further Investigation on the Interactions between Wetland Plants and PAH-degrading Bacteria..180
7.7.2 Field Trials in Waterlogged Soils Contaminated with PAHs181

References...183
Appendices..211
Publications ..213
Conference Presentations..213
Curriculum Vitae ...214