Luminescent Metallated Systems of Dansylamide and Acridone

CHOW Wing Cheong

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

Principal Supervisor: Professor WONG Wai Yeung, Raymond

Hong Kong Baptist University

August 2008
Abstract

The molecular design, synthesis, spectroscopic and photophysical characterization of a new series of transition metal-containing complexes and polymers incorporating dansyl and acridone chromophores are discussed. The applications of some of these compounds in photovoltaic devices and materials science are also outlined.

Chapter 1 contains a brief overview on the background of metal-containing complexes and their role in the fields of photovoltaic and solar cell devices and organic light-emitting diodes (OLEDs). The chemistry and utility of some common luminophores such as acridone, dansyl unit, phenothiazine and anthraquinone in material research are also discussed.

Chapter 2 presents the synthetic methodology and characterization of a series of new metal-acetylide complexes and polymers containing acridone and dicyanomethylene-substituted acridone chromophores. In addition, UV/Vis and photoluminescence spectroscopic methods were applied to observe the photophysical and molecular properties of the novel metal polymers and complexes. Tuning of the band gaps is accomplished by modification of the acridone ring based on dicyanomethylene substitution. The strong ICT in CN-based Pt polymers confers upon this push-pull polymer a band gap of 2.10 eV and this has opened a versatile avenue to
narrow-gap metal-containing copolymers.

A full account of the preparation, characterization, photophysical and thermal properties of a new series of polyplatinaynes containing various fluorescent organic cores and different oligothienyl chain length are presented in Chapter 3. Some of the metallopolymers have been fabricated into photovoltaic and solar cell devices and found to have efficient power conversion efficiency of up to 1.5%. Given the excellent solution-processability as well as performance advantage, this work has great potential for enhancing the light-to-electricity conversion efficiencies of polymer solar cells to a level of practical applications without the need for exploiting the triplet excited states in promoting an efficient photoinduced charge separation.

In Chapter 4, the synthesis and characterization of a new series of metal \(\sigma\)-acetylide complexes based on highly fluorescent dansyl unit are described. All of the complexes exhibit intense absorptions in the ultraviolet region and give intense luminescence at room temperature. The dansyl chromophore helps to greatly modify the fluorescent property of the metal complexes, allowing them to be good examples and models as chemosensors and probes for metal ions.

Chapters 5 and 6 present the concluding remarks and the experimental details of the work described in Chapters 2–4.
Table of Contents

Declaration i
Abstract ii
Acknowledgments iv
Table of Contents vi
List of Tables xiii
List of Figures xv
List of Schemes xxiv
List of Abbreviations and Symbols xxvi
Formula Index xxx

Chapter 1 Introduction 1
1.1 Background of Metal-Containing Polymers 1
1.2 Introduction to Metal-Containing Compounds 3
1.2.1 Organometallic Polyyne Polymers 3
1.2.2 Organometallic Acetylide Complexes 6
1.2.3 Overview of Metal–Bonding, Electronic States and Transitions in Organometallic Complexes and Polymers 7
1.3 General Applications of Metal-Containing Compounds 10
1.3.1 Background of Organic Light-Emitting Diodes (OLEDs) 10
1.3.2 Background of Photovoltaic and Solar Cells 11
1.3.2.1 Development of Photovoltaic and Solar Cells 11
1.3.2.2 Importance of Heavy Metals in the Application of Solar Cells 14
1.3.2.3 Operation of Bulk Heterojunction Organometallic Polymer Solar Cells 17

1.4 Fluorescent Chromophores Employed in the Thesis 19
1.4.1 Acridone 19
1.4.2 Dicyanomethylene-Substituted Acridone 20
1.4.3 Dansyl Group 21
1.4.4 Phenothiazine 22
1.4.5 9,10-Anthraquinone 24

1.5 Scope of the Thesis 26

1.6 References 28

Chapter 2 Syntheses, Redox and Optical Properties of Metal-Acetylide Complexes and Metallopolymers Containing Acridone and Electron-Deficient Dicyanomethylene-Substituted Acridone Derivatives 42

2.1 Introduction 42

2.2 Synthesis 49
2.2.1 Synthesis of Platinum(II) Precursors 49
2.2.2 Synthesis of Platinum(II) Diimine Dichloride Precursors 50
2.2.3 Synthesis of Acridone-Labelled Diethynyl Ligands \(L_1-L_3 \) 51

2.2.4 Synthesis of Dicyanomethylene-Substituted Acridone-Labelled Diethynyl Ligands \(L_4-L_5 \) 52

2.2.5 Synthesis of Acridone-Labelled Monoethynyl Ligands \(L_6-L_8 \) 53

2.2.6 Synthesis of Acridone-Labelled Monoethynyl Ligand \(L_9 \) 54

2.2.7 Synthesis of Dicyanomethylene-Substituted Acridone-Labelled Monoethynyl Ligand \(L_{10} \) 55

2.2.8 Synthesis of Platinum(II) Polyynes 56

2.2.9 Synthesis of Bis(alkynyl) Platinum(II) Dimers 57

2.2.10 Synthesis of Bis(alkynyl) Gold(I) Complexes 58

2.2.11 Synthesis of Bis(alkynyl) Mercury(II) Complexes 59

2.2.12 Synthesis of Bis(phenylethynyl)-Substituted Compounds 60

2.2.13 Synthesis of Mononuclear Platinum(II) Acetylide Complexes 61

2.2.14 Synthesis of Mononuclear Gold(I) Acetylide Complexes 62

2.2.15 Synthesis of Mononuclear Mercury(II) Acetylide Complexes 63

2.2.16 Synthesis of Mononuclear Platinum(II) Diimine-Stabilized Complexes 64

2.3 Results and Discussion 65

2.3.1 Spectroscopic Characterization 65

2.3.1.1 \(^1\)H and \(^{13}\)C NMR Spectroscopy 66

2.3.1.2 \(^{31}\)P NMR Spectroscopy 69
Chapter 3 Syntheses, Redox and Photophysical Properties of Low-Bandgap Metallopolyynes and Diynes Containing Various Functional Chromophores and Different Oligothienyl Chain Lengths

3.1 Introduction 135

3.2 Synthesis 141

3.2.1 Synthesis of Acridone-Based Ligand Precursors 141

3.2.2 Synthesis of Acridone-Based Acetylide Ligands and Their Corresponding Dimers and Polymers 143

3.2.3 Synthesis of Dicyanomethylene-Substituted Acridone-Based Diethynyl Ligands and Their Corresponding Dimers and Polymers 145

3.2.4 Synthesis of Phenothiazine-Based Ligand Precursors 147
3.2.5 Synthesis of Phenothiazine-Based Diethynyl Ligands and Their Corresponding Dimers and Polymers

3.2.6 Synthesis of Anthraquinone-Based Diethynyl Ligand and Its Corresponding Platinum(II) Dimer and Polymer

3.3 Results and Discussion

3.3.1 Spectroscopic Characterization

3.3.1.1 1H and 13C NMR Spectroscopy

3.3.1.2 31P NMR Spectroscopy

3.3.1.3 FAB Mass Spectrometry

3.3.1.4 Infrared Spectroscopy

3.3.2 X-Ray Crystallography

3.3.3 Optical Absorption and Photoluminescence Spectroscopy

3.3.3.1 Acridone-Based Compounds

3.3.3.2 Dicyanomethylene-Substituted Acridone-Based Compounds

3.3.3.3 Phenothiazine (PTZ)-Based Compounds

3.3.3.4 Anthraquinone-Based Compounds

3.3.4 Structural and Thermal Properties

3.3.5 Redox Properties

3.3.6 Polymer Photovoltaic Behavior

3.4 Concluding Remarks and Future Work

3.5 References
Chapter 4 Syntheses, Structures and Photophysical Properties of Organometallic Acetylide Complexes with Dansyl Luminophore

4.1 Introduction 206

4.2 Synthesis 215

4.2.1 Synthesis of Dansyl-Derived Alkynyl Ligand 215

4.2.2 Synthesis of Mononuclear Platinum(II) Bis(alkynyl) Complex 216

4.2.3 Synthesis of Mononuclear Platinum(II) Alkynyl Complex 218

4.2.4 Synthesis of Mononuclear Platinum(II) Diimine Bis(alkynyl) Complexes 219

4.2.5 Synthesis of Mononuclear Gold(I) Alkynyl Complex 220

4.2.6 Synthesis of Mononuclear Mercury(II) Complex 221

4.3 Results and Discussion 222

4.3.1 Spectroscopic Characterization 222

4.3.1.1 1H and 13C NMR Spectroscopy 223

4.3.1.2 31P NMR Spectroscopy 226

4.3.1.3 FAB Mass Spectrometry 227

4.3.1.4 Infrared Spectroscopy 228

4.3.2 X-Ray Crystallography 230

4.3.3 Optical Absorption and Photoluminescence Spectroscopy 236

4.3.4 DFT Calculations 245
4.3.5 Thermal Properties 247

4.4 Concluding Remarks and Future Work 248

4.5 References 250

Chapter 5 Concluding Remarks and Future Work 258

Chapter 6 Experimental Details 263

6.1 General Procedures 263

6.2 Materials 267

6.3 Experimental Details for Chapter 2 268

6.4 Experimental Details for Chapter 3 331

6.5 Experimental Details for Chapter 4 369

6.6 References 379

Curriculum Vitae 381