Analgesic Effect of Paeoniflorin in Rats with Visceral Hyperalgesia Induced by Neonatal Maternal Separation

ZHANG Xiaojun

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Dr. BIAN Zhao Xiang

Hong Kong Baptist University

September 2008
Abstract

Paeoniflorin (PF) is one of the principle active ingredients of the root of *Paeonia lactiflora* Pall. (family Ranunculaceae), a Chinese medicinal herb traditionally used to relieve pain, especially visceral pain. Functional visceral pain is the cardinal feature of functional gastrointestinal disorders, such as irritable bowel syndrome (IBS), for which etiology remains elusive and effective therapeutic regime is deficient. A few recent clinical studies have suggested the effect of the root of *P. lactiflora* on visceral pain of IBS, but the experimental evidence is scarce. The present study aimed i) to explore the mechanism of visceral hyperalgesia in rats induced by neonatal maternal separation (NMS); ii) to investigate the analgesic effect of PF on colorectal distension (CRD)-evoked visceral pain in NMS rats; and iii) to study the possible mechanisms of PF analgesia.

In the present study, both electromyographic recording (EMG) and abdominal withdrawal reflex (AWR) test revealed that NMS rats, compared with non-handled (NH) rats, exhibited increased visceromotor response (VMR) and decreased pain threshold pressure to CRD, indicating the establishment of visceral hyperalgesia in adult NMS rats. Further studies on correlation between extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinase (MAPK) signaling transduction pathway and NMS-induced visceral hyperalgesia demonstrated that: i) ERK cascade is involved in CRD-evoked VMR in NMS rats, since significant CRD effect on increasing p-ERK and *c-fos* expression was observed in the dorsal root ganglia (DRG), laminae I-II of lumbosacral dorsal horn, as well as the supraspinal centers involving central medial thalamic nucleus (CM), paraventricular thalamic nucleus (PV), and anterior cingulate cortex (ACC); ii) ERK cascade is implicated in the NMS-induced long-term changes in CNS, as significant NMS effect on increasing p-ERK and *c-fos* expression was observed in the DRG as well as laminae I-II, III-IV and X of the lumbosacral dorsal horn; and NMS rats showed denser *c-fos* expression in supraspinal centers involving the
CM and ventroposterolateral nucleus of the thalamus (VPL) in the basal state than NH rats; iii) a significant interactive effect of NMS and CRD on p-ERK expression was found in laminae III-IV of the lumbosacral dorsal horn, indicating that elevated p-ERK expression in this region is probably associated with the visceral hyperalgesia of NMS rats; iv) p-ERK was expressed in neurons and colocalized with the downstream immediate early gene c-fos, and peptides SP and CGRP; correlation analysis revealed the positive association between c-fos and p-ERK immunoreactive (IR) nuclei numbers in almost all of the investigated CNS structures; v) the involvement of ERK cascade in CRD-induced VMR was confirmed by the analgesic effect of MEK inhibitor U0126, which not only elevated the pain threshold pressure of NMS rats but also decreased CRD-evoked p-ERK and p-CREB expression in the thalamus and cingulate cortex; vi) the CRD-evoked ERK activation in NMS rats was demonstrated to be NMDA receptor-dependent, as the NMDA receptor antagonist MK-801 produced analgesic effect in AWR test and markedly suppressed the CRD-evoked p-ERK and p-CREB expression in the lumbosacral dorsal horn, thalamus and cingulate cortex. Dynamic analysis of the extracellular excitatory neurotransmitters glutamate and aspartate by microdialysis sampling and capillary electrophoresis coupled with laser-induced fluorescence detection (CE-LIFD) revealed that noxious CRD evoked a rapid and transient increase of the extracellular glutamate but not aspartate in the ACC of NMS rats. These results provide substantial evidence for the participation of NMDA receptor-dependent ERK cascade in the visceral pain process of NMS rats, and suggest the possible involvement of ERK MAPK pathway in NMS-induced neuronal activation in the CNS.

This study showed that a dose-dependent analgesic effect was produced by PF (45, 90, 180, and 360 mg/kg, i.p.). Centrally administered PF (4.5 mg/kg, i.c.v) also produced a significant analgesic effect. The analgesic effect of PF (45 mg/kg, i.p.) was maximal at 30 min after administration. Time-course determination of PF in cerebral nuclei showed that the maximal concentration was observed also at 30 min after PF (180 mg/kg, i.p.) in several cerebral nuclei, including the amygdala, hypothalamus, thalamus and cortex. Furthermore, the analgesic effect of PF on CRD-evoked visceral pain was mediated by
multiple receptors and neurotransmitters. AWR test showed that the analgesic effect of PF could be significantly blocked by naloxone, nor-binaltorphimine and naltrindole (the selective μ-, κ- and δ-opioid receptor antagonists, respectively), as well as by reserpine (monoamine depletor), DL-α-Methyltyrosine (catecholamines synthesis inhibitor) and yohimbine (α2-adrenoceptor antagonist). It also could be significantly attenuated by pCPA (5-HT depletor). Moreover, the analgesic effect of PF was significantly blocked by DPCPX, an antagonist that could selectively block the adenosine A1 receptors that are ubiquitous and abundant throughout the CNS and intimately associated with the opioidergic, noradrenergic and serotonergic pain modulatory pathways. Western blot and immunohistochemistry (IHC) analysis revealed that PF inhibited the CRD-evoked p-ERK and c-fos expression in the laminae I-II of lumbosacral dorsal horn and ACC, as well as CRD-evoked c-fos expression in the CM, PV and ventromedial hypothalamus (VMH). These results indicate that adenosine A1 receptor is involved in the PF’s analgesic effect, which was confirmed by the fact that DPCPX markedly reversed PF’s inhibition on CRD-evoked ERK cascade in the thalamus and cingulate cortex. In addition, CE-LIFD analysis of the neurotransmitters in ACC microdialysate showed that PF significantly decreased CRD-evoked increase of extracellular glutamate. Thus, the present results clearly show that PF has a dose- and time-dependent analgesic effect on visceral pain of NMS rats. The analgesic effect of PF may be produced in the CNS. PF’s inhibitory effect on CRD-evoked p-ERK is probably mediated via adenosine A1 receptor through reducing the glutamate release in the ACC.

In summary, the present results extend our understanding of the intracellular mechanism of functional visceral pain and visceral hyperalgesia by revealing the participation of NMDA receptor-ERK-CREB-c-fos chain in visceral pain process as well as in NMS-induced neuronal activation in the CNS, which appears responsible for behavioral hyperalgesia in adult NMS rats. Furthermore, these findings demonstrate that PF has an analgesic effect on visceral pain in rats with visceral hyperalgesia induced by NMS. This result provides experimental basis for the traditional clinical use of the root of *P. lactiflora*, and indicates that PF is potentially useful in clinical therapy for visceral pain.
associated with functional gastrointestinal disease, such as IBS.
1.3 Present Treatment of Visceral Pain and Hyperalgesia .. 20
1.4 Animal Models of Visceral Hypersensitivity ... 21
 1.4.1 NMS-induced visceral hyperalgesia .. 22
 1.4.2 Measurement of visceral pain .. 23
 1.4.2.1 Colorectal distension (CRD) .. 23
 1.4.2.2 Quantification of responses to CRD ... 24
1.5 Paoniflorin (PF) .. 25
 1.5.1 The root of Paeonia lactiflora Pall (family Ranunculaceae) .. 25
 1.5.2 PF ... 25
1.6 Dynamical Monitor of Brain Neurotransmitters ... 28
 1.6.1 Microdialysis .. 28
 1.6.2 Capillary electrophoresis (CE) detection of neurotransmitters 29
1.7 Hypothesis ... 30
1.8 Objectives ... 31
1.9 Design of the Research ... 31

CHAPTER 2. Analgesic Effect of Paoniflorin on NMS-Induced Visceral Hyperalgesia in Rats ... 34

2.1 Introduction ... 34
2.2 Materials and Methods ... 35
 2.2.1 Experimental design ... 35
 2.2.2 Animals ... 37
 2.2.3 Neonatal maternal separation (NMS) .. 37
 2.2.4 Drugs and chemicals .. 37
 2.2.5 Drug administration ... 38
 2.2.6 Intracerebroventricular (i.c.v.) injection ... 38
 2.2.7 Abdominal withdraw reflex (AWR) test ... 39
 2.2.8 Electromyogram (EMG) test .. 39
 2.2.9 HPLC determination of the kinetic cerebral nuclei distribution of PF 40
 2.2.9.1 HPLC condition .. 40
CHAPTER 3. PF INHIBITED NMDA RECEPTOR-DEPENDENT ERK ACTIVATION BY ACTING ON ADENOSINE A1 RECEPTOR .. 65

3.1 INTRODUCTION .. 65

3.2 MATERIALS AND METHODS ... 69

3.2.1 Experimental design ... 69

3.2.2 Animals and NMS ... 70

3.2.3 Drugs and administration... 71
3.2.4 Noxious CRD ... 71
3.2.5 Western blot analysis .. 71
3.2.6 IHC analysis .. 72
 3.2.6.1 Tissue preparation .. 72
 3.2.6.2 Single immunohistochemistry staining 73
 3.2.6.3 Immunofluorescence staining of serial sections 73
 3.2.6.4 Double immunofluorescence staining 74
3.2.7 Data analysis ... 74

3.3 RESULTS ... 75
3.3.1 Involvement of NMDA receptor-dependent ERK activation in VMR of NMS rats 75
 3.3.1.1 Analgesic effect of U0126 and MK-801 in NMS rats 75
 3.3.1.2 CRD-evoked p-ERK and p-CREB expression is NMDA receptor-dependent 75
3.3.2 Expression of p-ERK in neurons in the DRG, lumbosacral dorsal horn and cerebral nuclei... 76
3.3.3 Correlation of p-ERK expression and the expression of downstream gene and proteins 77
3.3.4 Comparison of NMS vs. NH rats on CRD-evoked p-ERK expression 77
 3.3.4.1 Western blot analysis of p-ERK 77
 3.3.4.2 IHC analysis of p-ERK .. 78
3.3.5 Comparison of NMS vs. NH rats on CRD-evoked \textit{c-fos} expression 79
 3.3.5.1 IHC analysis of \textit{c-fos} ... 79
3.3.6 Inhibition of PF on CRD-evoked ERK cascade ... 80
 3.3.6.1 Inhibition of PF on CRD-evoked p-ERK expression 80
 3.3.6.1 Inhibition of PF on CRD-evoked \textit{c-fos} expression 81
3.3.7 PF’s analgesic effect and inhibition on ERK cascade via adenosine \textit{A1} receptor 82
 3.3.7.1 Effect of adenosine \textit{A1} receptor antagonist (DPCPX) on the analgesic effect of PF 82
 3.3.7.2 Effect of DPCPX on PF’s inhibition on CRD-evoked p-ERK ... 82

3.4 DISCUSSION .. 84
 3.4.1 ERK cascade participated in CRD-induced VMR of NMS rats 86
 3.4.2 ERK cascade participated in NMS-induced visceral hyperalgesia 87
 3.4.3 ERK activation is correlated with the expression of downstream pain related gene and proteins
 ... 90
CHAPTER 4. PF’S INHIBITORY EFFECT ON ERK ACTIVATION VIA ACTIVATION OF ADENOSINE A1 RECEPTOR IS MEDIATED THROUGH REDUCING GLUTAMATE RELEASE IN THE CINGULATE CORTEX

4.1 INTRODUCTION ... 137
4.2 MATERIALS AND METHODS .. 139
4.2.1 Drugs and chemicals.. 139
4.2.2 Solutions .. 139
4.2.3 Apparatus and electrophoretic conditions......................... 139
4.2.4 Collection of microdialysate samples................................. 140
4.2.4.1 Animals and NMS.. 140
4.2.4.2 Surgery .. 141
4.2.5 Drug administration and microdialysis............................. 141
4.2.6 Derivatization .. 142
4.2.7 Method validation.. 142
4.2.8 Statistical analysis.. 143
4.3 RESULTS ... 143
4.3.1 Specificity and selectivity.. 143
4.3.2 Validation of quantification... 143
4.3.3 Effects of CRD and PF on extracellular glutamate and aspartate in the ACC dialysates 144
4.4 DISCUSSION .. 144
4.5 CONCLUSION ... 148

CHAPTER 5. CONCLUDING REMARKS .. 155
5.1 SUMMARY ... 155
5.2 PERSPECTIVES ... 158