Development of Fluorescent Chemosensors:
Mercury Sensing and Biological Molecules Sensing Probes

WANG Hao

A thesis submitted in partial fulfillment of the requirements
for the degree of
Master of Philosophy

Principal Supervisor: Prof. CHAN Wing Hong

Hong Kong Baptist University

April 2008
Abstract

Cholic acid-based fluorescent photoinduced electron transfer (PET) sensor probes A, B and C, bearing a pair of dithiocarbamate pendants as the receptive site and an anthracene moiety as the signal displaying unit, were designed and synthesized via a sequence of high yield steps. The sensor probes not only show high selectivity and sensitivity to Hg$^{2+}$ in aqueous acetonitrile solution, but also respond moderately to MeHg$^+$. A distinctive OFF-ON type signaling of up to 10-fold enhancement was observed for the novel sensor probe A toward Hg$^{2+}$ in aqueous acetonitrile solutions.

Novel ditopic fluorescent PET chemosensor AS1 was designed and synthesized from cholic acid. On the basis of rational chemical design, an amidothiourea moiety and a cyclic diamino-chiral receptive site were introduced simultaneously to the chiral framework of cholic acid to confer the chemosensor with specific binding abilities. In acetonitrile, the sensor demonstrated differential binding toward trifunctional aminoacids like serine, lysine, threonine and tyrosine against other simple aminoacids. Moreover, high enantioselectivities (K_D/K_L) of up to 8.9 and sensitivities in the micromolar range with the sensor were observed for trifunctional aminoacids.

The interactions of chemosensor AS1 and phosphate, pyrophosphate, AMP, ADP, ATP, CTP, GTP, TTP have been investigated. Interestingly, the aminoacid chemosensing probe AS1 was also found to be an ideal selective ATP sensor. ATP could trigger significant quenching in fluorescence of AS1 in a 1:1 aqueous CH$_3$CN solution at pH 7.4, whereas other phosphorus containing guest molecules only showed a much smaller effect. The nature of the complex between AS1 and ATP was established through
combined UV, 1H NMR and 31P NMR spectroscopic methods. The uniqueness of the new sensor is that it binds with ATP 33-124 times more selectively than other nucleotides, as evidenced from the respective binding constants. **AS1** is an extremely sensitive sensing probe, as little as 30 nM ATP can cause 15% fluorescence quenching of the sensor.

![Chemical structures of sensor A, sensor B, sensor C, and AS1](image-url)
Table of Contents

Declaration..i

Abstract...ii

Acknowledgements ..iv

Table of Contents...v

List of Figures.. viii

List of Tables.. xii

List of Schemes... xiii

1 Introduction..1
 1.1 Supramolecular Chemistry ...1
 1.2 Molecular Recognition ...2
 1.3 Development of Chemosensor ...3
 1.4 Design of Chemosensor..3
 1.5 Fluorescent Chemosensor...4
 1.6 Photoinduced Electron Transfer...6
 1.7 References ..9

2 Mercury Sensing Probes Based on Cholic Acid ...14
 2.1 Introduction ..14
 2.2 Design and Synthesis of Different Mercury Sensors A, B and C Based on Cholic Acid Molecular Framework ..16
 2.3 Analytical Characteristics of the Mercury Sensor A ..21
 2.3.1 Fluorescent Titration Experiments of Sensor A to Mercuric ion in
CH$_3$CN:H$_2$O=1:1 ..21

2.3.2 Detection of Mercuric ion in Different Solvent Systems29

2.3.3 1H NMR Study of Sensor A Towards Methyl Mercury33

2.4 Analytical Characteristics of the Mercury Sensors B and C34

2.5 Results and Discussion..37

2.5.1 General Comparison of Sensors A, B and C.................................37

2.5.2 Quantum Yield Measurement..38

2.5.3 Molecular Modeling of Three Sensors Towards Mercury.............39

2.6 Experimental Section..41

2.6.1 Synthesis of Sensors A and B..41

2.6.2 Synthesis of Sensor C..46

2.7 Conclusion..49

2.8 References ...51

3 Cholic-Acid Based Enantioselective Fluorescent Chemosensor for
Trifunctional Aminoacids ...55

3.1 Introduction ...55

3.2 Design and Synthesis of Chemosensors AS1, AS2 and Control Compound
AS3 ..56

3.3 Host-guest Interaction of Sensors AS1, AS2, AS3 and Aminoacids61

3.3.1 Binding Characteristics of Sensors AS1, AS3 to Various Aminoacids
..61

3.3.2 Enantioselectivity Displayed by Sensor AS1 in Recognition70