Persistent Organic Pollutants
in Foodstuffs and Human Samples
from Hong Kong

TSANG Hin Long

A thesis submitted in partial fulfillment of the requirements
for the degree of
Master of Philosophy

Principal Supervisor: Prof. WONG Ming Hung

Hong Kong Baptist University
May 2008
Abstract

This study aims to investigate the levels of Persistent Organic Pollutants (POPs) in different food items and human samples collected from Hong Kong and to determine the relationship between the levels of POPs in human samples with respect to their oral intake. The highest and lowest levels of PAHs were found in snubnose pompano (Trachinotus blochii) (61.26 ng/g wet wt) and white radish (Raphanus sativas) (4.86 ng/g wet wt), respectively. The results indicated that all Potency Equivalent Concentration (PEC) of total PAHs in all the food items (ranged from 0.008 to 0.085) were below the screening value of 0.67 ng/g (wet wt) for human consumption recommended by USEPA (2000). DDTs were mainly detected in freshwater fish (2.41 to 28.44 ng/g wet wt) and marine fish (1.43 to 193.29 ng/g wet wt.), with more than 26% freshwater fish and 73% marine fish exceeded the limit of 14.4 ng/g (wet wt.) for human consumption recommended by USEPA (2000). Low level of PCBs were detected in freshwater fish (0.14 to 0.16 ng/g wet wt.), marine fish (0.07 to 0.40 ng/g wet wt.), which were lower than the action level (2000ng/g wet wt) imposed by the USFDA. It can be concluded that fish remain the most important source of human intake of POPs in our region.

Higher levels of PAHs, DDTs and PCBs were detected in human milk (PAHs: 1981; DDTs: 3099; PCBs: 49 ng/g fat) when compared with maternal serum (1461, 1934, 41) and cord serum (1158, 1556, 40). LMW PAHs such as Naphthalene, Acenaphthylene,
Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene and Pyrene were detected in 100% of the three types of human samples. \(p,p' \)-DDE and \(p,p' \)-DDT were the only DDT metabolites detected in the human milk, maternal and cord serum with a detection frequency ranged from 92 to 100%. The estimated Toxic Equivalency Concentrations (TEQ) of dioxin-like PCBs detected was 2.44 pg/g fat. The estimated daily intake (EDI) of DDTs through intake of human milk ranged from 4.44 to 29.11 ng/g/day, with 7 out of 29 of the human milk samples exceeded the tolerable daily intake (TDI) (20 ng/g/day) proposed by the Health Canada Guideline. The EDI of PCBs ranged from 0.05 to 0.44 ng/g/day, and all were below the TDI (1 ng/g/day) proposed by Health Canada Guideline. The presence of PAHs, DDTs and PCBs in cord serum indicated that there is a prenatal exposure of the fetus to these contaminants.

Relatively higher dioxin levels (pg/g fat wt) were detected in fish (1.19) when compared with pork (0.136), chicken (0.018), eggs (0.053), vegetables (0.007 pg/g wet wt), flour (0.05 pg/g fresh wt) and rice (0.05 pg/g fresh wt) and were all below the guideline set by the European Union. The estimated average daily intake of dioxin was 2.04 pg EROD-TEQ/kg bw/day which was lower than that of WHO Tolerable Daily Intake (1- 4 pg WHO-TEQ/kg bw/day). Higher dioxin levels were observed in human milk (5.88 – 9.17 pg/g fat) when compared with maternal (3.13) and cord serum (2.97). EROD assay provides a fast and less expensive screening tool for testing the dioxin levels in the samples.
Table of Contents

Declaration .. i
Abstract .. ii
Acknowledgments iv
Table of Contents v
Lists of Abbreviations ix
List of Tables xi
List of Figures xiv

Chapter 1 GENERAL INTRODUCTION

1.1 Background
1.1.1 What are persistent organic pollutants? 1
1.1.1.1 Polycyclic aromatic hydrocarbons (PAHs) 2
1.1.1.2 Organochlorine pesticides (OCPs) 4
1.1.1.3 Polychlorinated Biphenyls (PCBs) 8
1.1.2 Human uptake of POPs 10
1.1.3 Toxicity of POPs 11
1.1.4 Exposure of infants to POPs through breast feeding 11
1.1.5 Human milk as an indicator of environmental quality 12
1.1.6 Toxicology Assessment through EROD biomarker 14
1.1.7 The current status of POPs contamination in Hong Kong 16
1.1.8 Objectives of the present study 17

Chapter 2 CONTAMINATIONS OF PERSISTENT ORGANIC POLLUTANTS IN FOOD ITEMS OF HONG KONG

2.1 Introduction 19
Chapter 3 BODY LOADINGS OF PERSISTENT ORGANIC POLLUTANTS OF HONG KONG RESIDENTS BASED ON HUMAN MILK, MATERNAL AND CORD SERUM

3.1 Introduction 62

3.2 Materials and Methods
3.2.1 Recruitment of participants 65
3.2.2 Sample collections 66
3.2.3 Questionnaires 66

2.2 Materials and Methods
2.2.1 Sample collection 21
2.2.2 Reagents and chemicals 22
2.2.3 Sample preparation and chemical analyses 22
2.2.4 The target compounds of different POPs 27
2.2.5 Gas chromatography conditions 28
2.2.6 Statistical analyses 30

2.3 Results and Discussion
2.3.1 PAHs in food items 30
 2.3.1.1 PAHs composition 31
 2.3.1.2 Regional Distributions of PAHs 34
 2.3.1.3 Potency Equivalent Concentration 38
2.3.2 DDTs in food 40
 2.3.2.1 DDTs profile 40
 2.3.2.2 Regional Distributions of DDTs 43
 2.3.2.3 DDTs concentrations in different fish species 46
 2.3.2.4 Correlations between the lipid content and POPs levels 54
2.3.3 PCBs in food 55

2.4 Risk Assessment 59

2.5 Conclusion 61
3.2.4 The target compounds investigated 66
3.2.5 Reagent and chemicals 67
3.2.6 Instruments
 3.2.6.1 Gas Chromatography-Mass Spectrometer Analysis 67
 3.2.6.2 Gas Chromatography-Electron Capture Detector Analysis 68
3.2.7 Extraction and Cleanup
 3.2.7.1 Human milk 68
 3.2.7.2 Human serum 69
3.2.8 Quality control 70
3.2.9 Statistical analyses 70
3.3 Results and discussion
3.3.1 PAHs in human milk, maternal serum and cord serum 71
3.3.2 DDTs in human milk, maternal serum and cord serum 79
3.3.3 PCBs in human milk, maternal serum and cord serum 92
3.3.4 Risk assessment for infant 100
3.4 Conclusion 102

Chapter 4 DIOXIN ASSESSMENT OF FOOD ITEMS AND HUMAN SAMPLES
4.1 Introduction 104
4.2 Materials and Methods
 4.2.1 Sample collections 108
 4.2.2 Sample preparation and cleanup
 4.2.2.1 Human milk and food 108
 4.2.2.2 Human serum 109
 4.2.3 Cell culture and EROD assay 110
 4.2.4 Chemical analyses 111
 4.2.5 Statistical analyses 112
4.3 Results and discussion
 4.3.1 Dioxin in food samples 112
Chapter 5 GENERAL DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Status of POPs contamination in food items</td>
<td>133</td>
</tr>
<tr>
<td>5.2</td>
<td>Status of POPs contamination in human samples</td>
<td>134</td>
</tr>
<tr>
<td>5.3</td>
<td>Status of Dioxin contamination in food and human samples</td>
<td>135</td>
</tr>
<tr>
<td>5.4</td>
<td>Correlations of POPs with fish intake, maternal age and tissue fat</td>
<td>136</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusion</td>
<td>137</td>
</tr>
<tr>
<td>5.6</td>
<td>Comments on future studies</td>
<td>138</td>
</tr>
</tbody>
</table>

List of References 141

Curriculum Vitae 168

List of Publications 169