Glutamate Antagonism as a Potential Treatment of Parkinson's Disease: A Study in a Rat Model

LEUNG Cheuk Hung

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principle Supervisor: Prof. YUNG Kin Lam

Hong Kong Baptist University

November, 2007
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease and the patients suffer serious motor disorder. Degeneration of dopaminergic neurons is the cause of PD. Glutamate excitotoxicity is known to contribute to the progressive dopaminergic denervation and it is one main cause of motor symptoms of PD. Attenuation of glutamate excitotoxicity may be a valuable mean in both treatment of motor symptoms and neuroprotection of dopaminergic neurons.
In the present study, two different strategies were employed to attenuate glutamate excitotoxicity by the reduction of glutamate receptor, NMDA receptor, overstimulation and the removal of synaptically released glutamate by the upregulation of glutamate transporter. First, a single dose of a small interfering RNA (siRNA) that targets N-methyl-D-aspartate receptor one (NR1) (siRNA-NR1) was employed to reduce the protein expression of functional NMDA receptor in the striatum. After administration of the siRNA-NR1 into normal rats, the NR1 protein was significantly down-regulated in both immunofluorescence experiment and Western blot analysis. After the application of the siRNA-NR1 to the 6-hydroxydopamine- (6-OHDA-)lesioned rat, an animal model of PD, the grip strength and the number of contralateral rotation, which represented motor deficits, were found to be significantly reduced. The siRNA-NR1 was also found to decline the reduction of tyrosine-hydroxylase (TH)-positive cell ratio (lesion vs nonlesion) in SN of the 6-OHDA-lesioned rats.
Secondly, the effects of a neuroprotective antibiotic, ceftriaxone, was examined. Seven-day treatment of ceftriaxone was applied to the rats before the 6-OHDA lesion and five post-lesion time points were selected (day 2, 4, 6, 8 and 10) for analyses. By behavioral tests, ceftriaxone treatments were found to decrease both the grip strength and numbers of contralateral rotations in the 6-OHDA-lesioned rats. In addition, the reduction of tyrosine-hydroxylase (TH)-positive cell ratio (lesion vs nonlesion) in SN of the 6-OHDA-lesioned rats with ceftriaxone treatment was found to be decreased. Application of ceftriaxone enhanced the immunoreactivity and protein expression of GLT1. GLT1 is a major glial glutamate transporter and is responsible for re-cycling of synaptic glutamate. These results indicate that the up-regulation of GLT1 protein by the application of ceftriaxone inert neuroprotection of dopaminergic neurons.
In addition, co-administration of ceftriaxone and siRNA-NR1 was also applied in the 6-OHDA-lesioned rats. Significant reductions in both grip strength and the number of rotation were found in the co-treated animal groups when compared to the saline-treated animals. The degree of neuroprotection was similar between co-treatment and ceftriaxone treatment groups.
In conclusion, the present results as a whole have provided that glutamate antagonism
is beneficial to both amelioration of motor symptoms and neuroprotection of dopaminergic neurons. The present data can provide a basis for future development of non-dopaminergic therapies in treatment of PD.
Table of Contents

Declaration i

Abstract ii

Acknowledgements iv

Table of Contents v

List of Figures x

List of Abbreviations xiv

Chapter 1 Background and Literature Review 1

1.1 Parkinson’s Disease 1

1.2 Basal Ganglia 2

1.2.1 Anatomical Structure of Basal Ganglia 2

1.2.2 Features of Each Regions Within the Basal Ganglia 3

1.2.2.1 Striatum (Str) 3

1.2.2.2 Golbus Pallidus (GP) 4

1.2.2.3 Subthalamic Nucleus (STN) 5

1.2.2.4 Substantia Nigra (SN) 6

1.2.3 Functions of the Basal Ganglia 7

1.2.4 Microcircuitry of the Basal Ganglia 7

1.3 Etiology of PD 9

1.4 Glutamate 10

1.5 Glutamate Receptors 11

1.5.1 Ionotropic Glutamate Receptors 12

1.5.2 The Mechanisms of Ionotropic Glutamate Receptors 13

1.6 Glutamate Transporters 14

1.7 Glutamate Excitotoxicity 15
1.8 Therapeutical Trend 16
1.9 Animal Model of PD 17
1.10 Objectives of the Thesis 19

Chapter 2 Materials and Methods 23

2.1 Animals 23
2.2 Six Hydroxydopamoine Lesion 23
 2.2.1 MFB Lesion 24
 2.2.2 Striatal Lesion 24
2.3 Apomorphine-induced Rotation Test 25
2.4 Grasping Test 25
2.5 siRNA-NR1 Application 26
2.6 Ceftriaxone Pretreatment 26
2.7 Tissue Preparation 26
2.8 Immunocytochemical Staining 27
 2.8.1 Single Immunoreactivity for Immunoperoxidase 27
 2.8.2.1 Immunofluorescence Staining 28
 2.8.2.2 Processing for Laser Scan Confocal Microscopy 29
2.9 Western Blotting 29
2.10 Semi-quantitative Analysis 31

Chapter 3 Effects of Administration of siRNA-NR1 in Six-hydroxydopamine-lesioned Rat 32

3.1 Introduction 32
 3.1.1 Striatum as the Target Region for Treatment of PD 32
 3.1.2 NMDA Receptor as the target for Treatment 33
 3.1.3 Application of siRNA 35
3.1.4 Mechanism of siRNA in the Down-regulation of Protein Expression 36

3.2 Objectives 37

3.3 Materials and Methods 38

3.4 Results 39

3.4.1.1 The Effect of siRNA-NR1 on Rotation Tests 39

3.4.1.2 Effects of siRNA-NR1 on Motor Strength 40

3.4.2 Change in TH Immunoreactivity After siRNA-NR1 Administration 40

3.4.3 Change in NR1 Immunoreactivity After siRNA-NR1 Administration in Normal Animals 41

3.4.3.1 Change in NR1 Immunoreactivity After siRNA-NR1 Administration in 6-OHDA-lesioned Rats After siRNA-NR1 Treatment 41

3.4.4 NR1 Protein Expression in Normal Rats After siRNA-NR1 Treatments 42

3.4.5 NR1 Protein Expression in Lesion Animals After siRNA-NR1 Treatments 42

3.5 Discussion 43

3.5.1 siRNA Affects Glutamatergic Transmission 43

3.5.2 siRNA Affects NMDA Receptor Functions 44

3.5.3 siRNA Brings Neuroprotection of Dopaminergic Neurons 47

3.5.4 Glutamate and Dopamine Interactions 47

3.5.5 Unleash the Power of siRNA Therapy 48

Chapter 4 Ameliorations of Motor Symptoms and Neuroprotective Effects of Ceftriaxone in the Six-hydroxydopamine-lesioned Rat 69

4.1 Introduction 69

4.2 Objectives 72

4.3 Materials and Methods 73
4.4 Results

4.4.1 Effects of Ceftriaxone Pretreatment on Muscular Rigidity and Contralateral Rotation in 6-OHDA-lesioned Rats

4.4.2 Tyrosine Hydroxylase Labeling in the Str and SN

4.4.3 Effects of Ceftriaxone Treatments on GLT1 Immunoreactivity

4.4.4 Changes in the Protein Expression of TH and GLT1 After Ceftriaxone Treatment

4.5 Discussion

4.5.1 GLT1 Levels and Neuroprotection

4.5.2 Up-regulation of GLT1

4.5.3 GLT1 Protein Level and Activity

4.5.4 Possible Mechanisms of GLT1 Up-regulation

4.5.5 Ceftriaxone May Mediate Other Forms of Neuroprotective Effects

4.5.6 Applicability of Ceftriaxone

Chapter 5 Co-administration of siRNA-NR1 and Ceftriaxone in the Six-hydroxydopamine-lesioned Rat: Synergism in Treatment?

5.1 Introduction

5.2 Objectives

5.3 Materials and Methods

5.4 Results

5.4.1 Co-administrations of siRNA-NR1 and Ceftriaxone on Motor Behaviors

5.4.2 Neuroprotective Effect on the TH-positive Neurons in the SN

5.4.3 Changes in NR1 and GLT1 Immunoreactivity After Co-administration