Thermal Rectification in One-Dimensional Nonlinear Systems

HE Dahai

A thesis submitted in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Principal Supervisor: Prof. HU Bambi
Hong Kong Baptist University
January 2008
Abstract

The problem of heat conduction in low-dimensional lattices is not only interesting for exploring the fundamentals of nonequilibrium statistical mechanics, but also sheds light on the possibility of designing thermal devices. In recent years, the designs of thermal rectifiers in such lattice systems have been proposed with better understanding of the mechanism of heat conduction.

In the present thesis, we extensively investigate thermal rectification in one-dimensional classical lattices. With the classification of possible factors leading to thermal rectification, we give a discussion of necessity for thermal rectification. Although a rigorous theoretical framework is still far from being tackled, we present an analytical approach to characterize asymmetric heat conduction through a weak link in a nonlinear chain. We also study the thermal rectification effect of heat conduction at macroscopic size. A design of a macroscopic thermal rectifier based on a phenomenological mechanism is introduced and discussed. Furthermore, we study the reversal of thermal rectification in some nonlinear models. The predominant direction of the thermal rectifiers can be affected by several parameters, such as the interfacial coupling, the system size, and the temperature. The effects of these parameters are studied separately and understood consistently.
Table of Contents

- **Declaration** i
- **Abstract** ii
- **Acknowledgements** iii
- **Table of Contents** iv

Introduction 1
- 0.1 Problem and Background .. 1
- 0.2 Outline ... 6

1 **Anomalous and Normal Heat Conduction** 8
 - 1.1 Models and Definitions .. 8
 - 1.1.1 Models ... 9
 - 1.1.2 Heat Bath .. 10
 - 1.1.3 Temperature ... 12
 - 1.1.4 Heat Flux ... 13
 - 1.1.5 Thermal Conductivity .. 14
 - 1.2 Anomalous Heat Conduction and Universality 16
 - 1.2.1 Anomalous Heat Conduction 16
 - 1.2.2 Universality .. 23
 - 1.3 Normal Heat Conduction .. 25

2 **Thermal Rectification in Nonlinear Systems** 28
 - 2.1 Thermal Rectification in Systems Consisting of Two or More Segments 28
 - 2.2 Thermal Rectification in One-segment Chains 38
 - 2.2.1 Mass Gradient ... 39
 - 2.2.2 Spatially Asymmetric Coupling Strength 40
2.2.3 Spatially Asymmetric On-Site Potential 42
2.2.4 Asymmetric System-Bath Coupling 43
2.3 Necessary Conditions for Asymmetric Heat Conduction 46

3 Asymmetric Heat Conduction through a Weak Link 48
 3.1 Temperature Dependence of Effective Phonon Frequency 49
 3.2 Phonon Transmission through Two Connected Harmonic Lattices 53
 3.3 Thermal Boundary Conductance for Two Connected Harmonic Segments 57
 3.4 Asymmetric Heat Conduction through a Weak Link 59

4 Thermal Rectification in Macroscopic Size 70
 4.1 General Remarks .. 71
 4.2 Thermal Rectification in Macroscopic Size 72
 4.3 Discussion on Practical Applications 80

5 Reversal of Thermal Rectification 83
 5.1 Introduction ... 84
 5.2 Reversal and Non-Reversal of Thermal Rectification in a Nonlinear Lattice .. 89
 5.3 Reversal of Thermal Rectification by Temperature Adjustment 97

6 Conclusion .. 104

Bibliography .. 108

Curriculum Vitae .. 116