Charge Transport and Injection
in Amorphous Organic Electronic Materials

TSE Shing Chi

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Dr. SO Shu Kong
Hong Kong Baptist University
August 2007
Abstract

This thesis presents how we use various measuring techniques to study the charge transport and injection in organic electronic materials. Understanding charge transport and injection properties in organic solids is of vital importance for improving performance characteristics of organic electronic devices, including organic-light-emitting diodes (OLEDs), photovoltaic cells (OPVs), and field effect transistors (OFETs).

The charge transport properties of amorphous organic materials, commonly used in organic electronic devices, are investigated by the means of carrier mobility measurements. Transient electroluminescence (EL) technique was used to evaluate the electron mobility of an electron transporting material - tris(8-hydroxyquinoline) aluminum (Alq3). The results are in excellent agreement with independent time-of-flight (TOF) measurements. Then, the effect of dopants on electron transport was also examined.

TOF technique was also used to examine the effects of tertiary-butyl (t-Bu) substitutions on anthracene derivatives (ADN). All ADN compounds were found to be ambipolar. As the degree of t-Bu substitution increases, the carrier mobilities decrease progressively. The reduction of carrier mobilities with increasing t-butylation can be attributed to a decrease in the charge-transfer integral or the wavefunction overlap.

In addition, from TOF measurements, two naphthylamine-based hole transporters, namely, N,N’-diphenyl-N,N’-bis(1-naphthyl)(1,1’-biphenyl)-4,4’-diamine (NPB) and 4,4’,4”-tris(n-(2-naphthyl)-n-phenyl-amino)-triphenylamine (2TNATA) were found to possess electron-transporting (ET) abilities. An organic light-emitting diode that employed NPB as the ET material was demonstrated. The electron conducting mechanism of NPB and 2TNATA in relation to the hopping model will be discussed. Furthermore, the ET property of NPB applied in OLEDs will also be examined.
Besides transient EL and TOF techniques, we also use dark-injection space-charge-limited current (DISCLC) to study the charge injection properties of three phenylamine-based (PA) compounds, MTDATA (4,4’,4’’-Tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine), NPB, and TPD (N,N’-diphenyl-N,N’-bis(3-methyl phenyl) (1,1’-biphenyl)-4,4’-diamine). Poly(3,4-ethylenedioxythiophene) doped with polystyrenesulphonic acid (PEDOT:PSS) was used as a hole-injecting anode in current-voltage (JV) and DISCLC. Clear DISCLC transient peaks were observed over a wide range of electric fields in all cases. For MTDATA and NPB, hole mobilities evaluated by DI experiments are in excellent agreement with mobilities deduced from TOF technique. It can be concluded that, for the purpose of JV and DI experiments, PEDOT:PSS forms an Ohmic contact with MTDATA and a quasi-Ohmic contact with NPB despite the relatively low-lying highest occupied molecular orbital of the later. In the case of TPD, hole injection from PEDOT:PSS deviates substantially from Ohmic injection, leading to a lower than expected DI-extracted hole mobility. Finally, a composite anode will be demonstrated to improve the hole injection efficiency.
Table of Contents

Declaration i
Abstract ii
Acknowledgements iv
Table of Contents vi
List of Figures x
List of Tables xiv

Chapter 1 Introduction 1

Chapter 2 Basic Principles of Organic Semiconductors 11

I. Structure and Electronic Properties 11
II. Charge Transport Mechanism 13
 A. Microscopic Charge Transport Mechanism 13
 1. Electronic Band and Hopping Transportation 13
 2. Hopping Model 16
 B. Macroscopic Charge Transport Mechanism 20
 1. Poole Frenkel (PF) Model 20
 2. Gaussian Disorder Model (GDM) 21
III. Charge Injection Mechanism 23
 A. Electronic Properties of Interfaces 23
 B. Thermionic Emission 28
 C. Tunneling Injection 29
 D. Thermo-activated Hopping Injection 30
IV. Current-voltage Characteristics of Organic Solids 32
 A. Space-charge-limited Current (SCLC) 32
 B. Dark-injection Space-charge-limited Current (DISCLC) Transient 35
V. Working Principle of Organic Light-emitting Diodes (OLEDs) 39
Chapter 3 Experimental details

I. Materials Purification
II. Sample Preparation
 A. Substrate Pre-treatment
 B. PEDOT:PSS Deposition
 C. Organic and Metallic Layer Deposition
 D. Liquid Nitrogen Cryostats with Intelligent Temperature Controller (ITC)
E. Sample Encapsulation
III. Experimental Methods
 A. Current-voltage (JV) and Luminance-current (LJ) Characteristics
 B. Electroluminescence (EL) Measurement
 C. Time-of-flight (TOF) Measurement
 D. Transient Electroluminescence (EL) Measurement
 E. Dark-injection Space-charge-limited Current (DISCLC) Measurement

Chapter 4 Electron Transport Properties of Undoped and Doped Tris(8-hydroxyquinoline) Aluminum (Alq$_3$)

I. Introduction
II. Experimental Details
 A. Chemical Structures of Alq$_3$ and the Dopants
 B. Structures of Undoped and Doped Devices
III. Results and Discussions
 A. Intrinsic Alq$_3$ Mobility
 B. Information Obtainable from Transient EL Measurements
 C. Doped Alq$_3$ Mobility Evaluated from Transient EL Technique
IV. Summary

vii
Chapter 5 Microscopic Charge Transport Mechanism of Anthracene Derivatives

I. Introduction
II. Experimental Details
 A. Chemical Structures of Anthracene Derivatives
 B. TOF Sample Structure
III. Results and Discussions
 A. Mobility Results of ADN Derivatives by TOF
 B. Molecular Orbital of ADN Derivatives
 C. Microscopic View on Ambipolar Transport of ADN Derivatives
 D. Effects of Tertiary-butyl (t-Bu) Substitution on Anthracene Derivative
 E. Microscopic Charge Transport Studies: Reorganization Energy and Charge-transfer Integral
IV. Summary

Chapter 6 Bipolar Transport in Naphthylamine-based Compounds and their Applications

I. Introduction
II. Experimental Details
 A. Chemical Structures of NPB, 2TNATA and the Dopants
 B. TOF Sample Structure
 C. Devices Fabrication
III. Results and Discussions
 A. Mobilities of NPB and 2TNATA by TOF
 B. Electron-only Device
 C. Application of NPB as an Electron Transporting Layer in OLEDs
 D. Microscopic Explanation on Bipolar Transport in Naphthylamine-based Compounds
 E. Color Tunable Homojunction NPB Devices
IV. Summary
Chapter 7 Nearly Ohmic Hole Injection and Macroscopic Charge-transport Phenomena in Phenylamine-based Compounds

I. Introduction 124
II. Experimental Details 126
 A. Measurement Techniques 126
 B. Phenylamine-based Compounds and their Energy Levels 129
 C. Sample Structures 129
III. Results and Discussions 131
 A. Mobility Result of MTDATA, NPB and TPD by TOF 131
 B. Different Anodes with NPB 133
 C. Using PEDOT:PSS as Hole-injecting Anode for Phenylamine-based Compounds 135
 D. Mobility Results of MTDATA, NPB and TPD by DISCLC 136
 E. Mechanisms of Hole Injection Using PEDOT:PSS Anode 138
 F. Hole Injection Using Composite Anode 142
IV. Summary 146

Chapter 8 Conclusions 149

Curriculum Vitae 154