Conjugated Metal-Organic Phosphorescent Materials and Polymers Containing Fluorene and Carbazole Units

HO Cheuk Lam

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Dr. WONG Wai Yeung, Raymond

Hong Kong Baptist University

July 2007
Abstract

The molecular design, synthesis, spectroscopic and photophysical characterization of a series of metal-containing polymers and complexes incorporating carbazole and fluorene chromophores are discussed. The applications of some of these complexes in optoelectronics devices and materials science are also outlined.

Chapter 1 contains a brief overview on the background of metal-containing complexes and their role in the fields of organic light-emitting diodes (OLEDs). The chemistry and utility of fluorene and carbazole luminophores in material research is also discussed.

Chapter 2 presents the synthetic methodology and characterization of a series of new metal-acetylide complexes and polymers containing oligocarbazole and oligofluorene and carbazole-fluorene mixed hybrids. The electronic properties of these complexes were greatly influenced by changing the organic spacers in the complexes. The triplet energy was enhanced by the presence of carbazole unit which can act as an effective conjugation-interrupter.

A full account of the preparation, characterization, photophysical and thermal properties of a new series of platinum(II) diimine polymers and complexes are presented in chapter 3. We report the photoluminescence and redox properties of these
metal acetylide compounds in terms of their chain length and ligand variations. The heavy atom effect as well as the attractive photoluminescent properties imposed by the diimine groups in harnessing the phosphorescence emissions render them suitable for the fabrication of polymer light-emitting diodes (PLEDs). Their utilization in the realization of nanoparticle research is also discussed.

In Chapter 4, the synthesis and photophysical studies of several multifunctional phosphorescent iridium(III) cyclometalated complexes consisting of the hole-transporting carbazole and fluorene-based 2-phenylpyridine moieties were reported. The photo- and electroluminescence properties of these phosphorescent metalated complexes have been studied in terms of the nature of cyclometalated ligands. Incorporation of hole-transporting carbazole units in various classes of complexes leads to an increase of the highest occupied molecular orbital levels and hence improves the charge balance in the resulting complexes. These iridium-based triplet emitters give a strong phosphorescence light at room temperature with relatively short lifetimes in the solution phase. Organic light-emitting diodes (OLEDs) using some of these complexes have been fabricated which show moderate to very high efficiencies. The potential of exploiting some of our orange phosphor dyes in the realization of white OLEDs is also discussed.

Chapter 5 outlines the synthesis, structural, photophysical, electrochemical and
electroluminescent properties of a novel family of multifunctional platinum(II) cyclometalated complexes. Different kinds of carbazole-containing cyclometalating ligands were introduced to fine-tune the absorption and emissive characteristics of the compounds. The observation of intensive room temperature phosphorescence emissions of these complexes which are beneficial for device applications are also discussed here.

Chapters 6 and 7 present the concluding remarks and the experimental details of the work described in Chapters 2–5.
Acknowledgements

I would like to express my profound gratitude and sincere thanks to my supervisor Dr. Raymond W. Y. Wong for his invaluable advice, encouragement and uninterrupted support throughout my studies. His precious comments and opinion in the preparation of this thesis at the time he was very busy are gratefully acknowledged. His devoted attitude in research has impressed me a lot and made my study a truly rewarding experience. Moreover, he is acknowledged for solving the X-ray crystal structures described in this thesis.

Wordless thanks go to Prof. Ian Manners (Department of Chemistry, University of Bristol) for his guidance and concern throughout my 3-month visit in England in the summer of 2006. His contribution on nanoparticle analysis with his student Mr. K. Liu (Department of Chemistry, University of Toronto) is also greatly appreciated. Special thanks are given to Dr. Z. Q. Gao, Dr. B. X. Mi (Centre for Advanced Luminescence Materials, Hong Kong Baptist University), Prof. Z. Lin (Department of Chemistry, The Hong Kong University of Science and Technology), Mr. B. Tao, Prof. Z. Y. Xie, Prof. D. G. Ma, Prof. L. X. Wang (State key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences), Miss M. F. Lin (Department of Chemistry, Hong Kong Baptist University), Miss X. M. Yu, Prof. H. S. Kwok (Department of Electronic and Electrical
Engineering and Centre for Display Research, The Hong Kong University of Science and Technology) for the fabrication and testing of OLEDs. Also, I would like to give special thanks to Prof. K. W. Cheah (Department of Physics, Hong Kong Baptist University) for the access of the facilities for the measurements of variable temperature solid state emission spectra of the new materials.

I would like to show my kind gratitude to our research group members, Dr. Y. H. Guo, Dr. G. J. Zhou, Dr. L. Liu, Dr. Z. He, Dr. S. Y. Poon, Mr. W. C. Chow, Mr. X. Z. Wang and others, for their genuine care, guidance, support and encouragement. I am indebted to all clerical and technical staff of the Department of Chemistry. Thanks also go to Prof. Ian Manners’s research group for their guidance to make my stay in England enjoyable.

I would like to acknowledge the Hong Kong Research Grants Council (Grants HKBU 2022/03P) and the Hong Kong Baptist University for financial support of this work. The award of a University of Shanghai John Yuen Memorial Scholarship (2006–2007) administered by the University is also gratefully acknowledged.

Last but not least, my wordless and wholehearted gratitude must be dedicated to my family in particular to my mother for their care, comfort and continuous support during my course of study.
Table of Contents

Declaration i
Abstract ii
Acknowledgments v
Table of Contents vii
List of Tables xv
List of Figures xix
List of Schemes xxxiii
List of Chart xxxv
List of Abbreviations and Symbols xxxvi
Formula Index xl

Chapter 1 Introduction 1

1.1 Background of Metal-Containing Compounds 1

1.2 Electronic States and Transitions for Transition Metal Complexes 3

1.3 Introduction of Light-Emitting Diodes (LEDs) 5

1.3.1 Operation Principle of OLED 6

1.3.2 The Importance of Heavy Metals in the Applications of OLED 10

1.3.3 Small Molecules and Polymeric Systems in OLED 12

1.3.4 Luminescent Chromophores Used in OLED 14

1.3.4.1 Fluorene 14

vii
Chapter 2 Synthesis, Optical Characterization and Photophysical Properties of Some Metal-Acetylide Complexes and Polymers Containing Oligocarbazole and Oligofluorene Units and Carbazole-Fluorene Mixed Hybrids

2.1 Introduction 30

2.2 Synthesis 36

2.2.1 Synthesis of Halogenated Precursors 36

2.2.2 Synthesis of Diethynyl Ligands 41

2.2.3 Synthesis of Platinum(II) and Palladium(II) Precursors 42

2.2.4 Synthesis of Platinum(II) Polyyynes 44

2.2.5 Synthesis of Bis(alkynyl) Platinum(II) Complexes 45

2.2.6 Synthesis of Bis(alkynyl) Gold(I) Complexes 47

2.2.7 Synthesis of Platinum(II) and Palladium(II) Alkynyl Complexes Derived from 3-(N-Carbazolyl)-1-propyne 48

2.3 Spectroscopic Characterization of Ligands and their Corresponding Metal Complexes 49

2.4 X-ray Crystallography 58

2.5 Thermal and Structural Properties of Platinum Polyyynes and 3-(N-Carbazolyl)-1-propyne-Containing Complexes 69
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Electrochemical Properties</td>
<td>72</td>
</tr>
<tr>
<td>2.7</td>
<td>Optical Absorption and Photoluminescence Spectroscopy</td>
<td>74</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Photoluminescent Properties of Diethylam Ligands</td>
<td>74</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Photoluminescent Properties of Pt(II) Polymers and Dimers and Au(I) Complexes</td>
<td>80</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Photoluminescence Properties of Mononuclear Metal Complexes 30–32</td>
<td>101</td>
</tr>
<tr>
<td>2.8</td>
<td>Concluding Remarks</td>
<td>106</td>
</tr>
<tr>
<td>2.9</td>
<td>References</td>
<td>108</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Synthesis, Structures and Emissive Properties</td>
<td>113</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>113</td>
</tr>
<tr>
<td>3.2</td>
<td>Synthesis</td>
<td>116</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Synthesis of Platinum(II) Diimine Dichloride Precursors</td>
<td>116</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Synthesis of Platinum(II) Diimine Monochloride Precursor</td>
<td>118</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Synthesis of Platinum(II) Bis(pyridyl) Dichloride Precursor</td>
<td>119</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Synthesis of Platinum(II) Bis(diphenylphosphino)ferrocene Dichloride Precursor</td>
<td>120</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Synthesis of Platinum(II) Diimine-Stabilized Polyynes</td>
<td>120</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Reactions of Platinum σ-Acetylide Polyynes with Dicobalt Octacarboxyl Fragments</td>
<td>122</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Synthesis of Mononuclear and Dinuclear Platinum(II) Diimine Complexes</td>
<td>123</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Synthesis of Platinum(II) Bis(pyridyl) and Bis(diphenylphosphino)ferrocene-Coordinated Polymers</td>
<td>125</td>
</tr>
</tbody>
</table>
Chapter 4 Synthesis, Structural, Photoluminescent and Electroluminescent Properties of Cyclometalated Iridium(III) Complexes Derived from Multifunctional Units

4.1 Introduction 166

4.2 Synthesis 171
 4.2.1 Synthesis of Cyclometalating Ligands 171
 4.2.2 Synthesis of Homoleptic Iridium(III) Complexes 175
 4.2.3 Synthesis of Heteroleptic Iridium(III) Complexes 177

4.3 Spectroscopic Characterization 179

4.4 X-Ray Crystallography 183

4.5 Optical Absorption and Photoluminescence Spectroscopy 192
 4.5.1 Photoluminescence Properties of Cyclometalating Ligands 192
 4.5.2 Photoluminescence Properties of Cyclometalated Iridium(III) Complexes 196

4.6 Electrochemical Properties 210
4.7 Thermal Properties

4.8 Electroluminescent Devices

4.8.1 Green Electrophosphors Based on Iridium Complexes with Hole-Transporting 2-[3-(N-Arylcarbazolyl)pyridine] Derivatives

4.8.1.1 Complexes 49 and 50 as Vacuum-Evaporated Layers

4.8.1.2 Comparison of OLED Performance for Isomeric Complexes 49, 54, 61 and 67 Based on Vacuum-Evaporated and Spin-Coated Emissive Layers

4.8.2 Color Tunable Electrophosphors Based on Iridium Complexes with 9-Phenyl-3-(pyridin-2-yl)carbazole-Substituted Derivatives

4.8.2.1 Green-Emitting Devices GXI and GXII using Methyl-Substituted Pyridyl Complexes 53 and 66

4.8.2.2 Orange Device OI using Trifluoromethyl-Substituted Pyridyl Complexes and its Applications in White OLEDs

4.8.3 Orange Electrophosphors Based on Iridium Complexes with Carbazolyl-Fluorene Hybrids and Their Potential Use as White Light Sources

4.8.4 Red Electrophosphors Based on Iridium Complexes with Isoquinoline-Based Carbazole and Carbazole-Fluorene Mixed Hybrids

4.8.4.1 Characteristics of Red OLEDs with Vacuum-Evaporated Emissive Layers

4.8.4.2 Characteristics of Red OLEDs with Spin-Coated Emissive Layers

4.9 Concluding Remarks

4.10 References
Chapter 5

Synthesis, Characterization, Photoluminescent and Electroluminescent Properties of Cyclometalated Platinum(II) Complexes Derived from Multifunctional Units

5.1 Introduction

5.2 Synthesis of Cyclometalated Platinum(II) Complexes

5.3 Spectroscopic Characterization

5.4 X-Ray Crystallography

5.5 Electrochemical Properties

5.6 Optical Absorption and Photoluminescence Spectroscopy

5.7 Thermal Properties

5.8 Electroluminescent Devices

5.8.1 Green Electrophosphors Based on Platinum(II) Complexes with Hole-Transporting 2-[3-(N-Arylcarbazolyl)pyridine] Derivatives

5.8.2 Green-yellow Devices using Trifluoromethyl-Substituted Pyridyl Platinum(II) Complex

5.8.3 Orange and Red Electrophosphors Based on Platinum(II) Complexes with Carbazolyl-Fluorene Hybrids

5.9 Concluding Remarks

5.10 References

Chapter 6

Concluding Remarks and Future Work
<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Experimental Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>General Procedures</td>
</tr>
<tr>
<td>7.2</td>
<td>Materials</td>
</tr>
<tr>
<td>7.3</td>
<td>Experimental Details for Chapter 2</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Synthesis of Halogenated Precursors</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Synthesis of Bis(trimethylsilylethynyl) Precursors</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Synthesis of Diethynyl Ligands</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Synthesis of Platinum(II) Polymers</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Synthesis of Platinum(II) Diynes</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Synthesis of Gold(I) Diynes</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Synthesis of Mononuclear Platinum(II) and Palladium(II) Complexes</td>
</tr>
<tr>
<td>7.4</td>
<td>Experimental Details for Chapter 3</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Synthesis of Platinum(II) Diimine Dichloride Precursors</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Synthesis of Platinum(II) Diimine Monochloride Precursor ([\text{PtCl(P}^{\mu}\text{Non}_2\text{bipy})])</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Synthesis of Platinum(II) Bis(pyridyl) Dichloride Precursor (\text{trans-}[\text{PtCl}_2(\text{Bu}_2\text{py})])</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Synthesis of Platinum(II) Bis(diphenylphosphino)ferrocene Dichloride Precursor ([\text{PtCl}_2(\text{dppf})])</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Synthesis of Platinum(II) Diimine-Stabilized Polynes</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Reactions of Platinum (\sigma)-Acetylide Polynes with Dicobalt Octacarbonyl Fragments</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Synthesis of Mononuclear and Dinuclear Platinum(II) Diimine Complexes</td>
</tr>
<tr>
<td>7.4.8</td>
<td>Synthesis of Platinum(II) Bis(pyridyl)- and Bis(diphenylphosphino)ferrocene-Coordinated Polymers</td>
</tr>
<tr>
<td>7.5</td>
<td>Experimental Details for Chapter 4</td>
</tr>
</tbody>
</table>
7.5.1 Synthesis of Brominated Precursors of Cyclometalating Ligands 394
7.5.2 Synthesis of Cyclometalating Ligands 399
7.5.3 General Procedures of Synthesis of Homoleptic Iridium(III) Complexes 408
7.5.4 General Procedures of Synthesis of Heteroleptic Iridium(III) Complexes 413
7.6 Experimental Details for Chapter 5 419
7.7 References 426

Curriculum Vitae 428