Study of the Anticarcinogenic Mechanisms of *Astragalus Membranaceus* in Colon Cancer Cells and Tumor Xenograft

TIN Man Ying

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

Principal Supervisor: Dr. Joshua K.S. KO

Hong Kong Baptist University

December 2006
Abstract

Colorectal cancer is one of the leading causes of cancer-related deaths in developed countries. Conventional chemotherapy based on 5-fluorouracil and related compounds has been used for over four decades. However, these treatments do not have a high response rate and may lead to severe toxicities such as myelosuppression, stomatitis, nausea, vomiting and diarrhea in patients. More effective and less toxic chemotherapeutic regimens are urgently needed, which include many novel herbal derivatives. The dried root of *Astragalus membranaceus* (HuangQi) has been used in many Chinese medicinal formulations in treating immune deficiency conditions. In recent years, it has also been used clinically as an adjuvant agent in cancer treatments to alleviate the side effects of conventional chemotherapeutic drugs. In this study, we investigated the effects of different Astragali extracts in HT-29 human colorectal cancer cells and tumor xenograft. We have shown that total Astragali saponins (AST), but not its total polysaccharides (APT) and the pure saponin Astragaloside IV (AS IV) possess anticarcinogenic effects in HT-29 cells. Cytotoxicity of AST in HT-29 cells was demonstrated using the MTT assay, with EC50 of 39.8 \(\mu \)g/ml and 31.6 \(\mu \)g/ml after 48 and 72h of treatment, respectively. AST was also found to cause profound proliferative inhibition in HT-29 cell proliferation as determined by the BrdU ELISA. Such anti-proliferative activity was associated with accumulation of cells in the S phase and G2/M arrest as determined by flow cytometry. Subsequent Western analysis revealed that the arrest could be due to the overexpression of cyclin dependent kinase inhibitor p21, cyclin A, and decreased activity of the cyclin dependent kinase cdc-2. Apart from that, AST also possess pro-apoptotic effects in HT-29 cells, which were exhibited by chromatin condensation DNA fragmentation. The associated apoptotic signaling includes a
significant decrease in Bcl-xL protein expression, caspase-3 activation and Poly (ADP-ribose) polymerase (PARP) cleavage. Further mechanistic studies have demonstrated that the anti-carcinogenic effects of AST are associated with overexpression of a novel transcriptional factor nonsteroidal anti-inflammatory drug (NSAID)-activated gene (NAG-1). By using Western blotting and real time polymerase chain reaction (PCR), we have shown a time-dependent increase in protein and mRNA expression of NAG-1 in HT-29 cells. The upregulation of NAG-1 expression is suggested to be caused by activation of upstream transcription factors such as the early growth response gene-1 (Egr-1), with prior induction at both protein and mRNA levels. Results from the kinase inhibitor studies demonstrate that activation of Egr-1 and NAG-1 by AST could be phosphatidylinositol 3-kinase (PI3K)-dependent, but may not rely on its downstream regulator protein kinase B (AKT). This represents a novel pathway for differential regulation of NAG-1 by the PI3K/AKT pathway. The anti-tumorigenic effects of AST were further displayed in a xenograft nude mice model. Reduction of tumor volume was evident in HT-29 xenografted nude mice following AST treatments. The anti-tumor effect of AST was comparable to that included by 5-FU based chemotherapy while producing less toxic side effects. An immunomodulating effect of AST was in part due to its ability to counteract the the leukopenic action of conventional chemotherapy. Taken together, our results indicate that the total Astragali saponins AST could be established as an effective chemotherapeutic agent in colon cancer treatment without great toxicity. It might also be used as an adjuvant in combination with conventional chemotherapy with reduced systemic side effects.
Table of Contents

Declaration i
Abstract ii
Acknowledgements iv
Table of Contents v
List of Figures x
List of Tables xv
List of Abbreviations xvi

Chapter 1 Introduction 1
1.1 Incidence of Colorectal Cancer 1
1.2 Pathogenesis of Colorectal Cancer 1
1.3 Cell Cycle and Cancer 7
1.4 Apoptosis and cancer 12
1.5 Contemporary Chemotherapy in Treating Colorectal Cancers 16
1.5.1 5-FU Based Chemotherapy in Colorectal Cancer Treatment 16
1.5.2 Drawbacks of Conventional Chemotherapy 19
1.6 Chinese Medicine as an Alternative Chemotherapeutic Option 19
1.7 Uses of Radix Astragali in Traditional Chinese Medicine 20
1.7.1 Constituents of Radix Astragalus 21
1.7.2 Astragali Polysaccharides 21
1.7.3 Astragali Saponins: Astragalosides 22
1.7.4 Astragali Flavonoids 25
1.7.5 Potential Anti-Tumor Effects of *Astragalus Membranaceus* in Treating Colon Cancer 25
1.7.6 Potential Use of *Astragalus Membranaceus* as Adjuvant Agent in Alleviating the Adverse Effects of Conventional Chemotherapeutic Drugs in Cancer Treatment 25
1.8 Nonsteroidal Anti-inflammatory Drug (NSAID)-Activated Gene (NAG-1) 27
1.8.1 Anti-Tumorigenic Activities of NAG-1 27
1.8.2 Regulation of NAG-1 by Phosphatidylinositol 3-Kinase /AKT Pathway 29

1.9 Aim of Present Study 32

Chapter 2 Materials and Methods 33

2.1 Materials 33

2.2 Cell Culture 33

2.3 Preparation of Extracts from Astragalus Membranaceus 33

2.4 Cell Viability Studies 34

2.5 Cell Proliferation Assay 35

2.6 Chromatin Condensation 36

2.7 DNA Fragmentation 36

2.8 Fluorescence-Activated Cell Sorter (FACS) Analysis 37

2.9 Western Blot Analysis 37

2.10 Real Time Polymerase Chain Reaction (PCR) 38

2.11 Induction of Dextran Sodium Sulfate (DSS) Colitis and Adenomatous Polyps in the Colon 41

2.12 Tumor Xenografts in Nude Mice 41

2.13 Immunohistochemical Analysis 42

2.14 Analysis of Apoptosis 45

2.15 White Blood Cell (WBC) Count 46

2.16 Study of Novel Regulatory Relationship Between PI3K/AKT Pathway and NAG-1 46

2.17 Statistical Analysis 47
Chapter 3 Results

3.1 Effects of Total Astragali Polysaccharides (APT) in Colon Cancer Cells

3.1.1 Effects of APT on HT-29 Cell Viability

3.1.2 Effects of APT on Cell Proliferation in HT-29 Cells in vitro

3.1.3 Effects of APT in HT-29 Tumor Xenograft

3.1.4 Effects of APT on DSS-Induced Adenomatous Polyps Formation

3.2 Effects of Total Astragali Saponins (AST) in Colon Cancer Cells

3.2.1 Effects of AST on HT-29 Cell Viability

3.2.2 Effects of AST on Cell Proliferation in HT-29 Cells

3.2.3 Evaluation of the Effects AST on HT-29 Cell Cycle Distribution by FASC Analysis

3.3 AST induced apoptosis in HT-29 cells

3.3.1 Chromatin Condensation in AST-Treated HT-29 Cells

3.3.2 Determination of Apoptosis in AST-Treated HT-29 Cells by DNA Fragmentation Assay

3.4 Determination of Changes in Protein Expression in AST-Treated Cells by Western Blot Analysis

3.5 The Effects of AST on Colon Tumor Growth in vivo

3.5.1 The Effects of AST Treatment on Tumor Growth Inhibition in HT-29 Xenografted Nude Mice

3.5.2 Immunohistochemical Analysis

3.6 Assessment of Drug Toxicity in vivo

3.6.1 Body Weight Drop

3.6.2 Counteraction of the Hematopoietic Effect of 5-FU on Total White Blood Cells (WBC)

3.7 Further Mechanistic Studies on the Anti-Tumor Effects of AST

3.7.1 Induction of NAG-1 and Egr-1 by AST in HT-29 Cells

3.7.2 The Relation Between PI3K/AKT/GSK-3β Pathway and NAG-1 Induction in the Action of AST

3.7.3 Regulation of NAG-1 by AKT & GSK-3β in AST-Treated HT-29 Cells

3.7.4 Regulation of NAG-1 by PI3K in AST-Treated HT-29 Cells

3.7.5 The Regulation of Egr-1 by the PI3K/AKT Pathway
Chapter 4 Discussion

4.1 Effect of Total Astragali Polysaccharides (APT) on Colon Cancer

4.1.1 APT Could Not Inhibit the Growth of Colon Cancer Cells

4.1.2 APT Could Not Reverse the Progression of Experimental Colitis to Adenomatous Polyps Formation in the Colon of Mice

4.2 Astragalosides IV (AS IV) Could Not Inhibit the Growth of HT-29 in vitro

4.3 Effect of Total Astragal Saponins (AST) on Colon Cancer Growth in vitro

4.3.1 AST Inhibits the Growth of HT-29 Colon Cancer Cells

4.3.2 AST Induced Apoptosis in HT-29 in vitro

4.4 Regulation of Cell Cycle Related Proteins by AST

4.5 AST Activates Apoptotic Signaling in HT-29 Cells

4.6 AST Inhibits the Growth of Colon Cancer in vivo

4.7 Immunomodulating Effects of AST in Immunosuppressed State

4.8 Further Mechanistic Studies on NAG-1

4.8.1 AST is a Potent Inducer of NAG-1 in HT-29 Cells

4.8.2 Involvement of PI3K/AKT Pathway in AST-Induced NAG-1 Overexpression

4.9 Conclusion

Chapter 5 Prospective Work

5.1 Further Investigation of Anti-Tumorigenic Effects of AST in Other Cell Lines

5.2 Further Investigation of the Apoptotic Pathways Modulated by AST

5.3 Isolation of Putative Active Compounds from AST

5.4 Involvement of PI3K/AKT Pathway in AST-Induced NAG-1 Expression

References