Stochastic Optimal Control

in Randomly-branching Environments

CHENG Tak Sum

A thesis submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Principal Supervisor: Prof. Dr. Dr.h.c. YEUNG Wing Kay, David

Hong Kong Baptist University

May 2006
Abstract

In this research, a framework is proposed to formalize optimization situations with stochastic dynamics and uncertain environments over time in the following manner. Since the future environment of the problem are not known with certainty, the concept of "random furcating" is introduced to describe future payoffs which change at any instant of time according to known probability distributions, which turn are defined in terms of multiple-branching stochastic processes. The introduction of this stochastic specification lead to a novel approach to solve dynamic control in terms of properties and solution concepts not explored in the previous literature. New and significant mathematical results are obtained, under which it becomes possible to characterize the conditions under which previously unsolvable control problems can be solved.

In addition to a new and analytically interesting way to model control situations over time, our research widens the scope of control theory to real world problems. In particular, this new approach widens the application of dynamic control theory to problems where future environments are not known with certainty.

The particular interest are solution techniques for randomly furcating endogenous horizon optimal control, infinite-time randomly furcating optimal control with infinite overlapping generations randomly furcating optimal control. Important applications
abound in economics and resource pricing. A class of resource extraction problems involving stochastic dynamics and randomly fluctuating non-autonomous payoffs are developed. A general solution mechanism is characterized and computer algorithms for solving the exact solution are developed. Exact solution to this stochastically complicated problem is presented.
Table of Contents

Declaration i
Abstract ii
Acknowledgement iv
Table of Contents v
List of Figures viii

Chapter 1 Introduction 1
1.1 Critical Literature Review, Limitations and Motivation for this Research 1
1.2 Objective of the Investigation 2
1.3 Structure of the Thesis 3

Chapter 2 Infinite Horizon Optimal Control 5
2.1 Dynamic Programming 5
2.2 Infinite Horizon Dynamic Optimization 8
2.3 Optimal Control 11
2.4 Stochastic Control 14
2.5 Infinite Horizon Stochastic Control 17
2.6 Concluding Remarks

Chapter 3 The Randomly-branching Paradigm

3.1 Model Formulation

3.2 Characterization of Feedback Solution the Basic Model

3.3 Pricing of Natural Resource under Randomly Furcating Payoff

3.4 Concluding Remarks

Chapter 4 Infinite-Horizons Furcating Stochastic Control

4.1 Model Formulation

4.2 A Solution Theorem

4.3 Infinite-Horizon Resource Extraction and Pricing

4.4 Concluding Remarks

Chapter 5 Computer Illustrations on Resource Extraction

5.1 Computer Algorithm for the Derivation of Exact Solution

5.2 Computer Simulation

5.3 Extreme Cases Simulation

5.4 Concluding Remarks
<table>
<thead>
<tr>
<th>Chapter 6 Conclusions</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix</td>
<td>105</td>
</tr>
<tr>
<td>List of References</td>
<td>115</td>
</tr>
<tr>
<td>Conference Attended</td>
<td>120</td>
</tr>
<tr>
<td>Curriculum Vitae</td>
<td>121</td>
</tr>
</tbody>
</table>