Roles of Neurokinin Receptor One in Six-hydroxydopamine-lesioned Rat: An Animal Model of Parkinson’s Disease

CHAN Wing Sai

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Principal Supervisor: Prof. YUNG Kin Lam

Hong Kong Baptist University

Aug 2006
ABSTRACT

Parkinson’s disease is a serious motor disorder and it is caused by a degeneration of dopaminergic neurons in the substantia nigra pars compacta. Neurokinins (NKs) are a group of neuropeptides that are suggested to be involved in the pathogenesis of Parkinson’s disease. Functions of NKs are mediated by NK receptors. Substance P, the natural ligand of NK1 receptor, is found to have neuroprotective effects on dopaminergic neurons. Septide is a selective NK1 receptor agonist.

Double immunofluorescence revealed that NK1 receptor immunoreactivity was primarily found in perikarya of striatal interneurons, namely the cholinergic, nitric oxide synthase (NOS)-positive striatal interneurons. On the other hand, double immunofluorescence of the nigral region showed that NK1 receptor immunoreactivity co-localized in dopaminergic, γ-aminobutyralergic (GABA) and NOS-immunoreactive neurons.

In 6-hydroxydopamine (6-OHDA)-lesioned rats, an animal model of Parkinson’s disease, both striatal and nigral mRNA levels of NK1 receptor of the lesioned side were significantly lower than the non-lesioned side. Immunofluorescence studies showed that NK1 receptor immunoreactivity was up-regulated in striatal interneurons and in nigral GABAergic and NOS-immunoreactive neurons on the lesioned side.

By double immunofluorescence, co-localization of NK1 receptor immunoreactivity in ionotropic glutamate receptors, namely, N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors were observed in the neostriatum and the substantia nigra (SN). This implies roles of NK1 receptor in these excitatory neurons.

In order to investigate the neuroprotective effect of septide in vitro, septide (1uM) was co-incubated with 6-OHDA (200uM) in primary cell cultures of neonatal rat dopaminergic neurons. After 25 hours, massive neuronal cell death was observed in those cultures incubated with 6-OHDA, whereas in septide co-incubation cultures most neurons were seen to be intact. By flow cytometric analysis, 17.03 ± 2.13 % of tyrosine hydroxylase (TH)-immunoreactive neurons were found to survive after co-incubation treatment but only 4.92 ±1.40 % of TH-positive neurons were found to survive after 6-OHDA treatment. In addition, double immunofluorescence revealed that the level of TH immunoreactivity was also reduced in the surviving neurons after 6-OHDA treatment. No significant reduction of TH immunoreactivity was found in the neurons co-incubated with septide and 6-OHDA. However, significant reduction of NK1 receptor immunoreactivity was found in the neurons co-incubated with septide and 6-OHDA. The present results indicate that septide has neuroprotective effects on dopaminergic neurons in culture. Activation of NK1 receptor by septide
may have implications in treatment of Parkinson’s disease. Further investigations were done on the \textit{in vivo} neuroprotective action of septide in 1-week and 2-week striatal lesioned rats. In apomorphine-induced rotational behavioral test, the numbers of rotations in the striatal lesioned rats after septide treatments were reduced. Besides, TH immunoreactivity in 1-week lesioned neostriatum after septide treatment was partly replenished. Septide restorative effect of TH immunoreactivity was also seen in the SN after 1-week lesion. Concordant with \textit{in vitro} co-incubation of septide and 6-OHDA, NK1 receptor immunoreactivity in the SN of 1-week striatal lesioned rats after septide treatment was diminished as shown by immunofluorescence technique.

Double immunofluorescence results illustrated the changes of distribution patterns of NK1 receptor of different neuronal subtypes and astrocytes in the neostriatum and the SN. In the neostriatum of 1-week striatal lesioned rats, most of the parameters returned back to the level as the normal animal except the NOS immunoreactivity. In the neostriatum of 2-week striatal lesioned rats after septide treatments, most of the parameters remained the same as the lesioned rats, except a reduction of NOS immunoreactivity was observed. In the SN of 1-week striatal lesioned rats after septide treatment, NK1 receptor immunoreactivity in dopaminergic neurons restored back to normal. However, reductions of NK1 receptor immunoreactivity in NOS-immunoreactive neurons and NOS immunoreactivity were observed. In the SN of 2-week striatal lesioned rats after septide treatment, NOS and glial fibrillary acidic protein (GFAP) immunoreactivity was restored back to normal; while, TH immunoreactivity and NK1 receptor immunoreactivity in GABAergic neurons declined. These findings may imply a therapeutic value of septide on the treatment of Parkinson’s disease.
TABLE OF CONTENTS

Declaration..i
Abstract...ii
Acknowledgements..iv
Table of Contents ..v
List of Tables..xxiii
List of Figures...xxvii
List of Abbreviations ..xxxviii

Chapter 1. BACKGROUND AND LITERATURE REVIEWS

1.1. PARKINSON’S DISEASE ...1

1.1.1. Epidemiology ..1

1.1.2. Etiology ..1

1.1.3. Pathology ...2

1.2. ANIMAL MODELS OF PARKINSON’S DISEASE ...4

1.2.1. The Medial Forebrain Bundle (MFB) Lesion with 6-hydroxydopamine (6-OHDA) ...5

1.2.2. The Striatal Lesion with 6-OHDA ..5

1.3. THE BASAL GANGLIA ..6

1.3.1. Anatomy and General Organization ...6

1.3.2. Functional Organization ..9

1.3.3. The Neostriatum ..11

1.3.3.1. Medium Spiny Neurons

1.3.3.2. Cholinergic Interneurons

1.3.3.3. neuronal Nitric Oxide Synthase-immunoreactive Interneurons
1.3.3.4. γ-amino-butyric-acid (GABA)ergic Interneurons

1.3.4. The Substantia Nigra (SN) ...14

1.3.4.1. Dopaminergic Neurons in the Substantia Nigra pars Compacta (SNC)

1.3.4.2. GABAergic Neurons in the Substantia Nigra pars Reticulata (SNr)

1.4. SUBSTANCE P AND NEUROKININ RECEPTOR 1..17

1.4.1. Substance P as a Neurotransmitter ..17

1.4.2. Structure-function Relationship of Substance P17

1.4.3. Molecular Biology of Substance P ..17

1.4.4. Distribution of Substance P ...18

1.4.5. Substance P Expression in Parkinson’s Disease18

1.4.6. Classification of Neurokinins Receptors ..19

1.4.6.1. Preferential Binding Order of Neurokinins Towards Different Neurokinins Receptors

1.4.6.2. Neurokinin Receptor 1 (NK1R)

1.4.6.3. Neurokinin Receptor 2 (NK2R)

1.4.6.4. Neurokinin Receptor 3 (NK3R)

1.4.7. Distribution of NK1R ...20

1.4.8. Structure and Functions of NK1R ...21

1.4.9. NK1R Agonist – Septide ...22

1.5. GLUTAMATE AND ITS RECEPTORS ..23

1.5.1. Glutamate as a Neurotransmitter ...23

1.5.2. Classification of Glutamate Receptors ..24

1.5.3. Functions of Ionotropic Glutamate Receptors24

1.5.4. Functions of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) Receptor Subunits ...25

1.5.5. Synaptic Targeting of AMPA Receptors ...26
1.5.6. Roles of AMPA Receptors in Parkinson’s Disease.................................26
1.5.7. Functions of N-methyl-D-aspartate (NMDA) Receptor Subunits............26
1.5.8. Synaptic Targeting of NMDA Receptors ...27
1.5.9. Roles of NMDA Receptors in Parkinson’s Disease28

1.6. OBJECTIVES OF THE THESIS...30
1.6.1. Anatomical Studies of the Localization of NKIR in neurons of the
Neostriatum and the SN Changes in the MFB-lesioned Model30
1.6.2. Co-localization of NKIR and Ionotropic Receptors30
1.6.3. Roles and Mechanisms of Septide, NKIR Specific Agonist, in
Dopaminergic Neurons Survival in 6-OHDA-induced Cell Culture
Model of Parkinson’s Disease ..30
1.6.4. Roles and Mechanisms of Septide in Neuronal Survival and Protection
of the 6-OHDA-induced 1-week and 2-week Striatal Lesioned Rats30
1.6.5. Changes of the Localization Patterns of NKIR in the Neostriatum and
the SN in the 6-OHDA-induced Striatal Lesioned Rats After
Septide Treatments ..31

Chapter 2. MATERIALS AND METHODS

2.1. ANIMALS ...32
2.2. TREATMENTS IN PRIMARY CELL CULTURES33
2.2.1. Neuronal Cell Cultures ..33
2.2.2. Neuroprotection by Septide in 6-OHDA-induced in vitro Parkinson’s
Disease Model ..33
2.2.3. Flow Cytometry Experiments ...34
2.2.4. Double Immunofluorescence for Cell Cultures35
2.3. REVERSE TRANSCRIPTASE-POLYMERASE CHAIN REACTION (RT-PCR)36
2.3.1. Preparation of Total Ribonucleic Acids (RNAs)36
2.3.2. *Synthesis of complementary Deoxyribonucleic Acids (cDNAs)*36

2.3.3. *Polymerase Chain Reaction Assay* ..37

2.3.4. *Control for RT-PCR* ..38

2.4. *WESTERN BLOT EXPERIMENTS* ..39

2.4.1. *Total Protein Extractions* ...39

2.4.2. *Subcellular Protein Extraction* ...39

2.4.3. *Protein Assay and Electrophoresis* ..40

2.4.4. *Immunoblotting* ..40

2.4.5. *Stripping* ..41

2.5. *IMMUNOCYTOCHEMISTRY* ...42

2.5.1. *Tissues Preparation* ...42

2.5.2. *Single Immunoreactivity for Immunoperoxidase*42

2.5.3. *Tissue Preparation for Immunoperoxidase*43

2.5.4. *Single Immunofluorescence* ..43

2.5.5. *Double Immunofluorescence* ..43

2.5.6. *Control for Single Immunofluorescence*44

2.5.7. *Control for Double Immunofluorescence*45

2.5.8. *Preparation for Fluorescent Microscopy* ..45

2.5.9. *Measurement of Immunoreactivity* ..45

2.6. *UNILATERAL LESION* ...47

2.6.1. *6-OHDA-induced Lesion in the MFB* ..47

2.6.2. *6-OHDA-induced Lesion in the Neostriatum*47

2.6.3. *Control for Unilateral Lesion* ...48

2.6.4. *Behavioral Screening of 6-OHDA-lesioned Rats*48

2.6.5. *Pharmacological Treatment in the Striatal Lesioned Rats*48

2.6.6. *Control for Pharmacological Treatment in the Striatal Lesioned Rats* 49
Chapter 3. CHANGES IN EXPRESSION OF NEUROKININ RECEPTOR ONE AFTER DOPAMINE DENERVATION IN 6-HYDROXYDOPAMINE-LESIONED RATS

3.1. INTRODUCTION ..51

3.2. OBJECTIVES ...52

3.3. MATERIALS AND METHODS ..52

3.3.1. Animals ..52

3.3.2. Unilateral MFB Lesion ..52

3.3.3. Rat Rotation Tests ...52

3.3.4. Polymerase Chain Reaction ..52

3.3.5. Western blot ..53

3.3.5.1. Tissue Preparation for Western Blot

3.3.5.2. Western Blot Analysis

3.3.6. Immunofluorescence and Semi-quantitative Analysis of Intensity after Treatments with 6-OHDA ..53

3.3.6.1. Tissue Preparation

3.3.6.2. Sources and Preparation of Antibodies for Immunofluorescence

3.3.6.3. Immunofluorescence

3.3.6.4. Control for Immunolabeling

3.4. RESULTS ..55

3.4.1. messenger Ribonucleic Acid (mRNA) Expressions of NK1R in the Neostriatum and the SN in vivo ..55

3.4.1.1. mRNA Expression of NK1R in the Neostriatum

3.4.1.2. mRNA Expression of NK1R in the SN

3.4.2. NK1R Protein Levels in the Neostriatum and the SN ..55
3.4.2.1. NK1R Protein Expression in the Neostriatum in vivo

3.4.2.2. NK1R Protein Expression in the SN in vivo

3.4.3. Single Labeling of NK1R in the Neostriatum and the SN55

3.4.3.1. Single Labeling of NK1R in the Neostriatum

3.4.3.2. Single Labeling of NK1R in the SN

3.4.4. Double Immunofluorescence Revealing Immunoreactivity for

NK1R and Neuronal Markers for Interneurons in the Neostriatum56

3.4.4.1. Immunoreactivity for NK1R in Cholinergic Interneurons in the Neostriatum

3.4.4.2. Immunoreactivity for NK1R in neuronal Nitric Oxide Synthase -immunoreactive Interneurons in the Neostriatum

3.4.4.3. Immunoreactivity for NK1R in Parvalbumin-immunoreactive Interneurons in the Neostriatum

3.4.5. Double Immunofluorescence for NK1R and Neuronal Markers for the SN ..57

3.4.5.1. Immunoreactivity for NK1R in Dopaminergic Neurons in the SNc

3.4.5.2. Immunoreactivity for NK1R in Parvalbumin-immunoreactive Neurons in the SNr

3.4.5.3. Immunoreactivity for NK1R in neuronal Nitric Oxide Synthase -immunoreactive Neurons in the SN

3.4.6. Control for Immunocytochemistry ...57

3.5. DISCUSSION ...59

3.5.1. Up-regulation of NK1R mRNA in the Non-lesioned Side of Lesioned Rats ...59
3.5.2. Down-regulation of NK1R mRNA in the Lesioned Side of Lesioned Rats ...59

3.5.3. Discrepancies of NK1R Protein and mRNA Levels ...60

3.5.4. Significances of Alterations of Cellular Distribution of NK1R in Different Types of Neurons in the Basal Ganglia ..60

3.6. CONCLUSION ...63

Chapter 4. EXPRESSION OF NEUROKININ RECEPTOR ONE IMMUNOREACTIVITY IN GLLUTAMATE-IMMUNOREACTIVE NEURONS IN THE NEOSTRIATUM AND SUBSTANTIA NIGRA OF 6-OHDA-LESIONED RATS

4.1. INTRODUCTION ...92

4.1.1. Glutamate-mediated Excitotoxicity ...92

4.1.2. AMPA Receptors ...92

4.1.3. NMDA Receptors ...93

4.2. OBJECTIVES ..95

4.3. MATERIALS AND METHODS ...96

4.3.1. Animals ..96

4.3.2. Unilateral MFB Lesion ...96

4.3.3. Rat Rotation Tests ...96

4.3.4. Immunofluorescence ...96

4.3.4.1. Tissue Preparation
4.3.4.2. Sources and Preparation of Antibodies for Immunofluorescence

4.3.4.3. Immunofluorescence Labeling

4.3.4.4. Control for Immunolabeling

4.4. RESULTS ..98

4.4.1. Double Immunofluorescence Revealing NK1R and AMPA

Receptor Subunits Immunoreactivity in the Neostriatum98

4.4.1.1. Immunoreactivity for NK1R in GluR1-immunoreactive

Neurons in the Neostriatum

4.4.1.2. Immunoreactivity for NK1R in GluR2-immunoreactive

Neurons in the Neostriatum

4.4.1.3. Immunoreactivity for NK1R in GluR3-immunoreactive

Neurons in the Neostriatum

4.4.2. Double Immunofluorescence Revealing NK1R and AMPA

Receptor Subunits Immunoreactivity in the SN99

4.4.2.1. Immunoreactivity for NK1R in GluR1-immunoreactive

Neurons in the SN

4.4.2.2. Immunoreactivity for NK1R in GluR2-immunoreactive

Neurons in the SN

4.4.2.3. Immunoreactivity for NK1R in GluR3-immunoreactive
4.4.3. **Double Immunofluorescence Revealing NK1R and NMDA**

Receptor Subunits Immunoreactivity in the Neostriatum 99

4.4.3.1. **Immunoreactivity for NK1R in NR1-immunoreactive**

Neurons in the Neostriatum

4.4.3.2. **Immunoreactivity for NK1R in NR2A-immunoreactive**

Neurons in the Neostriatum

4.4.3.3. **Immunoreactivity for NK1R in NR2B-immunoreactive**

Neurons in the Neostriatum

4.4.4. **Double Immunofluorescence Revealing NK1R and NMDA**

Receptor Subunits Immunoreactivity in the SN 100

4.4.4.1. **Immunoreactivity for NK1R in NR1-immunoreactive**

Neurons in the SN

4.4.4.2. **Immunoreactivity for NK1R in NR2A-immunoreactive**

Neurons in the SN

4.4.4.3. **Immunoreactivity for NK1R in NR2B-immunoreactive**

Neurons in the SN

4.4.5. **Control for Immunocytochemistry** 101

4.5. **DISCUSSION** ... 102
4.5.1. Co-expression of AMPA Receptor Subunits in NK1R

-immunoreactive Neurons in the Neostriatum ...102

4.5.2. Co-localization of AMPA Receptors in NK1R-immunoreactive

Neurons in the SN ..103

4.5.3. Functional Implication of NK1R Co-localized in AMPA

Receptor-immunoreactive Neurons in the Neostriatum103

4.5.4. Co-expression of NMDA receptor Subunits in NK1R-

Immunoreactive Neurons in the Neostriatum ..104

4.5.5. Functional Implication of NK1R Co-localized in NMDA Receptor-

Immunoreactive Neurons ..105

4.6. Conclusion ...107

Chapter 5. NEUROPROTECTIVE EFFECTS OF NEUROKININ
RECEPTOR ONE AGONIST SEPTIDE IN DOPAMINERGIC
NEURONS IN PRIMARY CULTURE

5.1. INTRODUCTION ..132

5.1.1. NK1R Agonist — Septide ...132

5.2. OBJECTIVES ..133

5.3. MATERIALS AND METHODS ...134

5.3.1. Primary Cell Culture of Nigral Neurons ..134

xiv
5.3.2. Pharmacological Treatments ...134

5.3.3. Flow Cytometry ..134

5.3.4. Process for Light Microscopy ...134

5.3.5. Immunofluorescence and Semi-quantitative Analysis of Intensity

after Treatments with Septide ..135

5.4. RESULTS ...136

5.4.1. Control for Flow Cytometry and Specificity of Anti-TH and

Secondary Antibodies Analyzed with Flow Cytometer136

5.4.2. Morphology of Nigral Neurons in Culture136

5.4.3. Percentages of Dopaminergic Neurons in Nigral Cell Culture

Analyzed by Flow Cytometer...136

5.4.4. Control for Immunocytochemistry ...137

5.4.5. Effects of Drug Treatments on the Expression of

TH Immunoreactivity ..137

5.4.6. Effects of Drug Treatments on the Expression of

NK1R Immunoreactivity ...138

5.5. DISCUSSION ..139

5.5.1. Septide Protected Dopaminergic Neurons Against 6-OHDA Toxicity139

5.5.2. Statistically Significant NK1R Immunoreactivity Reduction
Chapter 6. NEUROPROTECTIVE EFFECTS OF NEUROKININ RECEPTOR ONE AGONIST SEPTIDE IN STRIATAL 6-OHDA-LESIONED RATS

6.1. INTRODUCTION ...155

6.1.1. Septide ..155

6.2. OBJECTIVES ...157

6.3. MATERIALS AND METHODS ..158

6.3.1. Animals ..158

6.3.2. Unilateral 6-OHA-induced Lesion in the Neostriatum ...158

6.3.3. Rat Rotation Tests ..158

6.3.4. Septide Injection ..158

6.3.5. Western Blot ..159

6.3.5.1. Tissue Preparation for Western Blot

6.3.5.2. Subcellular Protein Preparation for Western Blot

6.3.5.3. Electrophoresis

6.3.5.4. Sources and Preparation of Antibodies for Western Blot

6.3.5.5. Immunolabeling of the Protein Blot
6.3.5.6. Control of Protein Loading

6.3.6. Immunostaining of Sections ...160

6.3.6.1. Tissues Preparation

6.3.6.2. Sources and Preparation of Antibodies for Light Microscope

6.3.6.3. Immunocytochemistry for Light Microscope

6.3.6.4. Sources and Preparation of Antibodies for Immunofluorescence

6.3.6.5. Single Immunofluorescence

6.4. RESULTS ...162

6.4.1. Apomorphine-induced Rotational Behavior in 6-OHDA-leisoned Rats.162

6.4.1.1. Control for Apomorphine Test

6.4.1.2. Rotations in Rats That Received Septide at One Week after Lesion

6.4.1.3. Rotations in Rats That Received Septide at Two Weeks after Lesion

6.4.2. Western Blotting ..162

6.4.2.1. Control for Western Blotting

6.4.2.2. Expression of NK1R Proteins in Striatal Tissues

6.4.2.3. Expression of NK1R Proteins in Nigral Tissues

6.4.2.4. Expression of DAT Proteins in the Striatal Tissues

6.4.2.5. Expression of DAT Proteins in the Nigral Tissues

6.4.2.6. Expression of TH Proteins in the Striatal Tissues

xvii
6.4.2.7. Expression of TH Proteins in the Nigral Tissues

6.4.2.8. Expression of NSE Proteins in the Striatal and Nigral Tissues

6.4.3. **Single Labeling Using Peroxidase Method** .. 165

6.4.3.1. Control for Immunocytochemistry

6.4.3.2. TH Immunoreactivity in the Neostriatum of the 1-week Striatal Lesioned Rats

6.4.3.3. TH Immunoreactivity in the SN of the 1-week Striatal Lesioned Rats

6.4.3.4. DAT Immunoreactivity in the Neostriatum of the 1-week Striatal Lesioned Rats

6.4.3.5. DAT Immunoreactivity in the SN of the 1-week Striatal Lesioned Rats

6.4.3.6. NK1R Immunoreactivity in the Neostriatum of the 1-week Striatal Lesioned Rats

6.4.3.7. NK1R Immunoreactivity in the SN of the 1-week Striatal Lesioned Rats

6.4.4. **Immunofluorescence** ... 167

6.4.4.1. Control for Immunofluorescence

6.4.4.2. Immunoreactivity for TH in the Neostriatum of the 1- and 2-week Striatal Lesioned Rats

6.4.4.3. Immunoreactivity for TH in the SN of the 1- and 2-week Striatal Lesioned Rats
Striatal Lesioned Rats

6.4.4.4. Immunoreactivity for NK1R in the Neostriatum of the 1- and 2-week Striatal Lesioned Rats under Low Magnification (100X)

6.4.4.5. Immunoreactivity for NK1R in the Neostriatum of the 1- and 2-week Striatal Lesioned Rats under High Magnification (630X)

6.4.4.6. Immunoreactivity of NK1R in the SN of the 1- and 2-week Striatal Lesioned Rats under Low Magnification (100X)

6.5. DISCUSSION

6.5.1. Septide Treatments Successfully Attenuate Apomorphine-induced Motor Deficits in the 6-OHDA-lesioned Rats

6.5.2. Septide Treatments Can Preserve and Protect Dopaminergic Axon Terminals Against 6-OHDA Toxicity

6.5.3. Septide Treatments Also Can Protect Perikarya of Dopaminergic Neurons in the SN

6.5.4. Responses of NK1R after Septide Treatments

6.6. CONCLUSION

Chapter 7. SEPTIDE TREATMENTS CAUSE CHANGES IN CO-LOCALIZATION PATTERNS OF NK1R IMMUNOREACTIVITY IN THE NEOSTRIATUM OF
6-OHDA-LEISONED RATS

7.1. INTRODUCTION ..209

7.1.1. NK1R Is Localized in Different Interneurons in the Neostriatum209

7.1.2. NK1R is Localized in SNc and SNr Neurons ..209

7.1.3. Change in Pattern of Expression of NK1R Immunoreactivity

after Septide Treatments ...209

7.2. OBJECTIVES ..211

7.3. MATERIALS AND METHODS ..212

7.3.1. Animals ..212

7.3.2. Unilateral 6-OHDA-induced Lesion in the Neostriatum212

7.3.3. Septide Injection ..212

7.3.4. Immunolabeling of Sections ..212

7.3.4.1. Tissues Preparation

7.3.4.2. Sources and Preparation of Antibodies for Immunofluorescence

7.3.4.3. Immunofluorescence

7.3.4.4. Control for Immunolabeling

7.4. RESULTS ..214

7.4.1. Immunofluorescence ..214

7.4.1.1. Control for Immunofluorescence
7.4.1.2. Immunoreactivity for NK1R and ChAT in the Neostriatum after Septide Treatments

7.4.1.3. Immunoreactivity for NK1R and nNOS in the Neostriatum after Septide Treatments

7.4.1.4. Immunoreactivity for NK1R and TH in the SN after Septide Treatments

7.4.1.5. Immunoreactivity for NK1R and PV in the SN after Septide Treatments

7.4.1.6. Immunoreactivity for NK1R and nNOS in the SN after Septide Treatments

7.4.1.7. Immunoreactivity for NK1R and GFAP in the SN after Septide Treatments

7.5. DISCUSSION ..220

7.5.1. Changes of NK1R in ChAT-immunoreactive Interneurons in the Neostriatum after Septide Treatments ...220

7.5.2. ChAT Immunoreactivity Changes in the Neostriatum after Septide Treatments ...220

7.5.3. Changes of NK1R in NOS-immunoreactive Interneurons in the Neostriatum after Septide Treatments221
7.5.4. nNOS Immunoreactivity Changes in the Neostriatum after Septide Treatments ... 222

7.5.5. TH Immunoreactivity in SNc neurons after Septide Treatments 223

7.5.6. NK1R and PV Immunoreactivity in SNr Neurons after Septide Treatments .. 224

7.5.7. NK1R and NOS Immunoreactivity in nNOS-immunoreactive Nigral Neurons in the SN .. 224

7.5.8. NK1R Immunoreactivity in GFAP-immunoreactive Astrocytes in the SN ... 225

7.6. CONCLUSION .. 227

Chapter 8. SUMMARY AND CONCLUSION .. 278

Appendices ... 282

List of References .. 294

Curriculum Vitae... 339