Cellular Metabolism in *In Vitro* Toxicity and Toxicology Studies

YU Lok Chiu

A thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Philosophy

Principal Supervisor: Dr. Mildred M.S. YANG

Hong Kong Baptist University

September 2005
Abstract

The aim of the present study is to clarify the role cellular metabolism plays in the course of cell death. Cellular metabolism is a study of inter-conversion of nutritional substrates to generate useful chemical molecules to maintain proper cellular function. The level of comprehensive analysis of these molecules would provide a complete picture of cellular metabolism. Because of the different variety of metabolites, the current study will concentrate on those related to energy and redox metabolism.

Using cell cultures as models, the present study aims to investigate metal induced cell death. Four objectives were set: (1) What are the energy and redox changes when cells were exposed to toxic metals? (2) Do all toxic metals affect cellular metabolism similarly? (3) Do all cells response similarly to a single toxicant? (4) What is the correlation between cellular metabolic changes and cell death?

We have studied the effect of Cd, Zn, Se and an organic hydroperoxide on the HepG2 hepatoma and the C6 glioma cells. The results demonstrated that during this initial phase of Cd and Zn administration, there was a significant increase in cellular energy state as demonstrated by an increase in ATP/TAN, and a decrease in AMP/TAN. The change was correlated to a decrease in GSH/GSSG. Se, on the other hand, caused an opposite change in cellular energy state suggesting that different toxicants act differently on cells. Upon exposure to Cd, the C6 glioma cells were more sensitive than the HepG2 hepatoma cells as demonstrated by a more sensitive decrease in GSH/GSSG. This correlated by a relatively low glutathione reductase activity in the C6 glioma cells. Finally, using Cd as a model, the dynamic change in cellular energy and redox metabolism was described over a 6-hr exposure to a 3-hr LC50 of Cd. The results correlated with the cell death through apoptosis.
Table of Contents

Declaration ... i
Abstract .. ii
Acknowledgement ... iii
Table of Contents ... iv
List of Tables .. viii
List of Figures .. ix
List of Abbreviation ... xii

Chapter 1: Research Background

1.1 Overview of Cellular Metabolism ... 1
1.2 Modes of Cell Death .. 3
 1.2.1 Apoptosis .. 3
 1.2.2 Necrosis ... 6
 1.2.3 Alternative Modes of Cell Death ... 8
1.3 The Role of Cellular Metabolism and Cell Death ... 9
 1.3.1 The Significance of Energy Metabolites in Studying Cell Death 11
 1.3.2 The Significance of Redox Metabolites in Studying Cell Death 12
1.4 Metal-induced Cell Death .. 14
 1.4.1 The Role of Cadmium ... 14
 1.4.2 The Role of Zinc .. 18
 1.4.3 The Role of Selenium .. 20
1.5 Organic-chemical-induced Cell Death ... 22
 1.5.1 The Role of tert-butylhydroperoxide .. 22
1.6 Objectives ... 24
Chapter 2: Methods in Studying Cellular Metabolism In Vitro

2.1 Introduction ... 26

2.2 Cell Culture as Experimental Model .. 26

2.2.1 The HepG2 Hepatoma Cells ... 26

2.2.2 The C6 Glioma Cells .. 28

2.3 Correlation between Energy and Oxidative Subsets............................... 29 of Metabolites

2.3.1 Determination of Energy Metabolites .. 29

2.3.2 Analysis of Cellular Energy State ... 30

2.3.3 Determination of Cellular Oxidative State ... 31

2.3.4 Analysis of Cellular Oxidative State ... 32

2.4 Methods of Extracting Metabolites in Cultured Cells 33

2.5 Methods for Integrating Metabolomic Data in Cultured Cells 37

Chapter 3: Cadmium- and tert-butylhydroperoxide-Induced Changes in
Energy and Redox States in HepG2 Cells: Correlation with
Mode of Cell Death

3.1 Introduction ... 39

3.2 Material and Methods .. 40

3.2.1 Chemicals .. 40

3.2.2 Analysis of Cell Viability ... 40

3.2.3 Determination of Lipid Peroxidation ... 41

3.2.4 Extraction of Energy Metabolites .. 41

3.2.5 Analysis of Data ... 42

3.2.6 Detection of Apoptosis ... 42

3.3 Results... 42
3.3.1 Effect of Cd and t-BHP on Cell Viability ... 42
3.3.2 Effect of Cd and t-BHP on Cellular Metabolism 43
3.3.3 Effect of Cd and t-BHP on Nucleus Staining 44

3.4 Discussion .. 50

Chapter 4: Energy and Redox States in C6 Glioma Cells following Acute Exposure to Zn, Se$^{+4}$ and Se$^{+6}$ and The Correlation with Apoptosis

4.1 Introduction ... 54
4.2 Materials and Methods ... 57
 4.2.1 Chemicals ... 57
 4.2.2 Cell Culture Model ... 57
 4.2.3 Determination of Cell Viability ... 58
 4.2.4 Extraction of Cellular Metabolites ... 58
 4.2.5 Analysis Cellular Metabolites and Metabolic States 59
 4.2.6 Nuclear Staining of Apoptotic Bodies ... 59
 4.2.7 Statistical Analysis ... 60
4.3 Results ... 60
 4.3.1 Effect of Zn on Cellular Metabolism .. 60
 4.3.2 Effect of Se$^{+4}$ on Cellular Metabolism .. 61
 4.3.3 Effect of Se$^{+6}$ on Cellular Metabolism .. 62
 4.3.4 Apoptosis following Exposure to Different Metals 63
4.4 Discussion ... 71
Chapter 5: Cellular Metabolism and Enzyme Activity

5.1 Introduction .. 76
5.2 Materials and Methods .. 77
 5.2.1 Chemicals .. 77
 5.2.2 Quantitative Analysis of Cellular Metabolites .. 78
 5.2.3 Quantitative Analysis of Glutathione Reductase Activity 78
5.3 Results ... 79
 5.3.1 Effect of Cd on Metabolism in Different Cells .. 79
 5.3.2 Analysis of Glutathione Reductase Activity ... 79
5.4 Discussion .. 84

Chapter 6: Redox Metabolism in Cadmium-induced Cell Death

6.1 Introduction .. 88
6.2 Materials and Methods .. 90
6.3 Results ... 90
 6.3.1 Effect of Cd on Cellular Metabolism ... 90
 6.3.2 Effect of Cd on Mitochondrial Transmembrane Potential (Ψm) 91
 6.3.3 Nuclear Staining of Apoptotic Bodies ... 92
6.4 Discussion ... 97

Chapter 7: Summary .. 100
List of References ... 103
Curriculum Vitae ... 131
List of Publications .. 132