Construction of Wavelets Based on Unitary Transform, Permutation and Matrix Extension with Applications to Watermarking

YANG Jianwei

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Principal Supervisor: Prof. TANG Yuan Yan

Hong Kong Baptist University

February 2005
Abstract

Since 1980s, wavelet analysis has been a popular field in scientific research. To apply wavelet methods to digital image processing, two-dimensional wavelets have to be constructed. However, there still exists many open problems for the construction of multidimensional wavelets, and only some concrete results have been obtained for certain special two-dimensional examples. On the other hand, non-separable wavelets have attractive properties for some applications such as compression, watermarking, etc. In this thesis, we are mainly concerned with the construction of two-dimensional wavelets and their applications in watermarking. Several significant results have been obtained. Some of these results are also well suited to one-dimensional wavelets.

The unitary transform of conjugate quadrature filter (CQF) is proposed. By unitary transform of one-dimensional CQF, we provide a parameterization of 2-band one-dimensional orthogonal wavelet filters. Any 2-band one-dimensional orthogonal wavelet filters can be given explicitly. By unitary transformation of matrix CQF, we provide an algorithm for constructing orthogonal multiwavelets from the corresponding multiscaling function. Applying this transformation once, the orders of the polynomials associated with the polyphase matrix of the first r rows will be decreased by one. This method is not restricted by the length of the filter, and we need not factorize the polyphase matrix into a special case. By unitary transform of two-dimensional CQF, we provide a parameterization method for constructing two-dimensional orthogonal wavelet filters. The choice of the parameters is not restricted by any implicit condition. Two-dimensional orthogonal wavelet filters can be chosen adaptively.

Methods for constructing non-separable orthogonal wavelets are developed. By the introduce of permutation of two-dimensional CQF, a method is presented for constructing two-dimensional non-separable orthogonal wavelets. Our construction begins with one-dimensional wavelet filters as in the construction of separable wavelet filters, but non-separable wavelet filters can be achieved. The lowpass & highpass
wavelet filters are given in explicit expressions. An algorithm is also provided for constructing Belogay-type wavelets. These wavelets are based on the commonly used dilation matrix \(2I \). Their Regularity is discussed.

The problem of matrix extension related to the construction of orthogonal wavelets from interpolatory functions is well solved. For an \(m \)-band \((m \in \mathbb{Z}, m > 2)\) orthogonal interpolatory function, we provide the formulas for constructing the associated wavelet masks. For a pair of two-dimensional dual refinable functions, when one of them is interpolatory, the formulas for constructing the associated biorthogonal wavelet masks are also given.

A method is provided for constructing two-dimensional biorthogonal wavelets from a pair of dual refinable functions. If one of the dual refinable functions is supported in \([0, 3] \times [0, 3] \cap \mathbb{Z}^2\), formulas are given for constructing the corresponding biorthogonal multiwavelet masks. If all the dual refinable functions are not supported in \([0, 3] \times [0, 3] \cap \mathbb{Z}^2\), we shorten the support of the dual refinable functions to \([0, 3] \times [0, 3] \cap \mathbb{Z}^2\) by increasing the multiplicity. Hence, in our method, the matrix extension by the Quillen-Suslin Theorem is avoided.

We describe a blind watermarking scheme for still image based on discrete non-separable wavelet transform (DNWT). Pseudo-random codes will be added to more coefficients in the high frequency sub-bands by DNWT than by discrete non-separable wavelet transform (DSWT). It is shown that the DNWT watermarking scheme is robust to some distortions such as noising, JPEG compression, cropping, and especially for sharpening. Furthermore, it is also shown that the DNWT watermarking scheme can not be substituted by adjusting the threshold such that the number of the DSWT coefficients to embed watermark is no less than the number of the DNWT coefficients.

Finally, based on parameterization of two-dimensional wavelet filters, we describe a blind watermarking system for ownership verification of digital images. The ample choice of wavelet filters will increase the difficulty for counterfeiters to gain the exact knowledge of our watermark. In this system, watermarks are inserted into several middle-frequency sub-bands. The existence of the watermark is asserted if any one of the correlation values is greater than a pre-determined threshold.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Motivation .. 1
1.2 Contributions Of This Thesis 2
1.3 The Organization Of This Thesis 5

2 The Construction Of Wavelets: A Survey

2.1 Historical Perspective 7
2.2 The Construction of Wavelets: A Survey 9
 2.2.1 The Construction Of One-Dimensional Wavelets 10
 2.2.2 The Construction Of Multiwavelets 12
 2.2.3 The Construction Of Multi-Dimensional Wavelets 15
 2.2.4 Other Topics In The Research Of Wavelet Analysis 19
2.3 Conclusions .. 22
3 One-Dimensional Wavelets

3.1 Parametrization Of 2-Band One-Dimensional Orthogonal Wavelet Filters

3.1.1 Introduction

3.1.2 Unitary Transform Of One-Dimensional CQF

3.1.3 Parametrization Of One-Dimensional Low-Pass Wavelet Filters

3.2 Construction Of M-Band Orthogonal Wavelets

3.2.1 Background

3.2.2 M-Band Scaling Functions

3.2.3 Construction Of Interpolatory Scaling Functions

3.2.4 Construction Of The Orthogonal Wavelets Corresponding To
The Interpolatory Function

3.3 Summary

4 Construction Of Multiwavelets

4.1 Preliminaries

4.1.1 Introduction

4.1.2 Multiresolution Analysis Of $L^2(\mathbb{R})$ With Multiplicity r

4.2 Construction Of Orthogonal Multiwavelets

4.2.1 The Perfection Reconstruction Condition

4.2.2 Unitary Transform Of Matrix CQF

4.2.3 Construction Of Orthogonal Multiwavelets

4.3 Construction Of Biorthogonal Multiwavelets

4.3.1 The Problem Of Matrix Extension

4.3.2 Construction Of Biorthogonal Multiwavelets

4.4 Summary

5 Construction Of Two-Dimensional Orthogonal Wavelets

5.1 Preliminaries

5.1.1 Introduction

5.1.2 Multiresolution Analysis Of $L^2(\mathbb{R}^2)$

5.2 Construction Of Belogay-Type Wavelets

5.2.1 Construction Of Nonseparable Orthogonal Wavelets
5.2.2 Regularity .. 70
5.2.3 The Algorithm And Example 72
5.3 Construction Of Non-Separable Wavelets 73
 5.3.1 A Lemma ... 73
 5.3.2 Construction Of Separable Wavelet Filters 74
 5.3.3 Construction Of Non-Separable Orthogonal Wavelets 76
 5.3.4 Examples ... 82
5.4 Summary .. 83

6 Design Of Two-Dimensional Orthogonal Wavelet Filters In Terms Of Unitary Transform 85
 6.1 Preliminary ... 85
 6.2 Unitary Transform Of Two-Dimensional CQF 86
 6.3 Construction Of Two-Dimensional Wavelet Filters 89
 6.4 Summary .. 95

7 Construction Of Two-Dimensional Biorthogonal Wavelets 97
 7.1 The Biorthogonal Wavelet System 97
 7.1.1 Introduction 97
 7.1.2 Preliminaries 99
 7.2 Construction Of Biorthogonal Wavelets From Interpolatory Function 102
 7.3 Construction Of Two-Dimensional Biorthogonal Wavelets With Shorter Support 106
 7.4 Construction Of Two-Dimensional Biorthogonal Multiwavelets 110
 7.4.1 Multiresolution Analysis Of $L^2(R^2)$ With Multiplicity r 111
 7.4.2 Construction Of Two-Dimensional Biorthogonal Multiwavelets 115
 7.5 Summary ... 121

8 Digital Watermarking 123
 8.1 Introduction ... 123
 8.2 Historical Perspective Of Watermark 124
 8.3 Applications Of Digital Watermarking 125
 8.4 Requirements Of Watermarking Systems 126
8.5 Spatial Domains Versus Transform Domain 128
8.6 Wavelet-Based Watermarking Scheme 130
8.7 Summary .. 133

9 A Robust Watermarking Scheme Based On Discrete Non-Separable
Wavelet Transform ... 134
 9.1 Introduction ... 134
 9.2 The Decomposition and The Reconstruction Algorithms 136
 9.3 Watermarking Based On Discrete Non-Separable Wavelet Transform . 138
 9.3.1 Watermark Embedding 138
 9.3.2 Watermark Detection 139
 9.4 Experimental Results 140
 9.4.1 The Non-Separable Wavelet Filters 141
 9.4.2 Imperceptibility Of Our Watermarking Scheme 144
 9.4.3 Robustness Of Our Watermarking Scheme 145
 9.4.4 Comparisons With Watermarking Schemes Based On
 DSWT .. 147
 9.5 Summary .. 151

10 Image Ownership Verification Via Parameterized Wavelet Systems152
 10.1 Introduction ... 152
 10.2 Preprocessing Of Watermark 155
 10.2.1 Rotation Of The Watermark 155
 10.2.2 Scrambling The Watermark By Chaos 157
 10.3 Watermarking Scheme 158
 10.3.1 Watermark Embedding 158
 10.3.2 Watermarking Detection 161
 10.3.3 Comparisons With Previous Methods 162
 10.4 Experimental Results 163
 10.5 Summary .. 170

11 Conclusions And Further Works 172
 11.1 Summary Of The Main Results 172

viii