Enhanced Phytoextraction of Metal Contaminated Soils Using Beneficial Microorganisms

WU Shengchun

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Prof. WONG Ming Hung

Hong Kong Baptist University

December 2004
ABSTRACT

The present study aims to investigate the effects of inoculation of beneficial soil microorganisms, such as plant growth promoting rhizobacteria (PGPRs) and arbuscular mycorrhizal fungi (AMF), on enhancing phytoextraction of higher plants on heavy metal contaminated sites.

The inocula of both PGPRs and AMF were successfully established in clean soil and metal contaminated soil, although the elevated metal concentrations in soil exerted toxic effects on the introduced microorganisms. Survival and growth of soil bacteria declined according to the increase of metal concentrations. The order of metal toxicity to N-fixing bacterium (*Azotobacter chroococcum*) was: Cd > Cu > Zn > Pb.

It was found that the mechanisms of bacterial tolerance to metal toxicity might involve either extracellular binding or intracellular metal sequestration by metal-induced heat stable proteins (HSPs). The capacity of bacterial sorption of metal ions from solution could be described well by the linearized Freundlich and Langmuir adsorption isotherm. *A. chroococcum* (Gram negative) tended to sorb more metal ions than did *Bacillus megaterium* (Gram positive). An extra synthesis of heat stable proteins (HSPs) was induced in the bacterial cells of both Gram positive and Gram negative strains when exposed to metal ions. The concentration of HSPs in the cells usually increased with the increase of metal concentrations.

It was demonstrated that the inoculation of bacteria or/and mycorrhizae could alter metal speciation and bioavailability in soils through a soil column experiment and greenhouse study. Bacterial inoculation significantly increased fractions of DTPA-extractable, HOAc-soluble and water-soluble metals (Zn, Cu and Cd). This can be attributed to the decrease in soil pH due to the secretion of proton, amino acids and
organic acids through metabolic activities of bacteria. However, the bioavailability of Pb was markedly decreased due to microbial inoculation, since Pb ions can be easily bound on surface of bacterial cells and mycorrhizal hyphae. In addition, the inoculation of P-solubilizing bacteria and AMF resulted in an increase of available phosphate in soil solution, which can form precipitation of Pb-phosphate therefore reduced Pb bioavailability.

The inoculation of beneficial microorganisms significantly stimulated the growth of host plants, because these microbes were able to i) increase nutrient availability and soil fertility in the rhizosphere; ii) produce metabolites and other biologically active substances, which are beneficial to plant growth; and iii) exert a protection effect on the host plants through alleviating the metal toxicity. Although inoculation of PGPRs and/or mycorrhizal fungi in most cases led to a decrease of metal concentrations in the shoot tissue, the total amount of heavy metals removed by plants were still significantly increased due to a higher harvestable biomass compared to the control. In addition, it was observed that an intercropping system with the high-yielding mycorrhizal plants grown alongside accumulator/hyperaccumulators (non-mycorrhizal) could be a new alternative for improving the efficiency of phytoremediation. Based on the results of this study, beneficial microorganisms such as PGPRs and AMF may play a significant role in phytoremediation of metal contaminated soil.
CHAPTER 1. GENERAL INTRODUCTION

1.1 Background of Research
 1.1.1 Current Issues of Soil Contamination Caused by Heavy Metals 1
 1.1.2 Existing Technologies and Measures for Treatment of Heavy Metal
 Contaminated Soils 5
 1.1.3 Definition, Types and Advantages of Phytoremediation 7

1.2 Literature Review
 1.2.1 Current Progress of Phytoextraction 17
 1.2.2 Mechanisms of Plant Tolerance to Metal Toxicity 19
 1.2.3 Roles of Soil Bacteria in Phytoextraction 20
 1.2.4 Roles of Mycorrhizae in Phytoextraction 25
 1.2.5 Conclusion 27

1.3 Objectives of Research 28
1.4 Contributions and Significance of Present Research 29
1.5 Framework of Research 30

CHAPTER 2. ISOLATION AND SELECTION OF BENEFICIAL BACTERIA
FROM AGRONOMIC SOILS AND DETERMINATION OF OPTIMIZED
CONDITIONS FOR PGPR SURVIVAL

2.1 Introduction 32
2.2 Materials and Methods

2.2.1 Soil Sampling for Microbial Investigation 35
2.2.2 Incubation Experiments Concerning the Optimal Conditions for the Survival Status and N$_2$-Fixation Capacity of A. Chroococcum 38
2.2.3 Experiment Design 40
2.2.4 Data Analysis 42

2.3 Results and Discussions

2.3.1 Microbial Diversity at Four Different Subecosystems in Hong Kong and Isolation of Beneficial Microorganisms 43
2.3.2 Effect of Soil Properties and Other Ecological Factors on the Survival and Physiological Activities of N-fixing Bacteria 48

2.4 Conclusion 65

CHAPTER 3. EFFECT OF BACTERIAL INOCULATION ON THE METAL SPECIATION, MOBILITY AND BIOAVAILABILITY

3.1 Introduction 67
3.2 Materials and Methods

3.2.1 Soil and Pb/Zn Tailings 70
3.2.2 Bacterial Strains and Preparation of Inoculum 70
3.2.2 Experimental Design 71
3.2.3 Chemical and Biological Analyses 72
3.2.4 Statistical Analysis 76

3.3 Results and Discussions

3.3.1 Soil pH, EC, DOC and Available P 76
3.3.2 Chemical Extractability of Metals 88
3.3.3 Speciation and Distribution Consequential Chemical Extractability of Metals 90
3.3.4 Effects of Bacteria on the Movement of Metal Ions in Soil 94

3.4 Conclusion 98

CHAPTER 4. INTERACTIONS BETWEEN PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPRS) AND HEAVY METALS RELATED TO THE BACTERIAL DETOXIFICATION AND TOLERANCE TO METAL IONS

4.1 Introduction 100
4.2 Materials and Methods 103
4.2.1 Isolation of Metal Tolerant PGPRs 103
4.2.2 Metal Sorption Experiment 104
4.2.3 Seed Germination and Root Elongation Tests 106
4.2.4 Metal-induced Expression of Heat-stable Protein in Bacterial Cells 107

4.3 Results and Discussions
4.3.1 Metal-binding Capacity of the Bacteria 108
4.3.2 Time-dependent Kinetics Studies of Metal Binding by Bacteria 113
4.3.3 Assays of Seed Germination and Root Elongation 115
4.3.4 Biosynthesis of Metal-bind Protein in the Bacteria Induced by Cd^{2+} and Cu^{2+} 126

4.4 Conclusion 132

CHAPTER 5. EFFECTS OF PLANT GROWTH PROMOTING RHIZOBACTERIA AND ARBUSCULAR MYCORRHIZAL FUNGI ON MAIZE GROWTH

5.1 Introduction 133
5.2 Materials and Methods
5.2.1 Soil 137
5.2.2 Fertilizer and Microbial Inocula 137
5.2.3 Pot Experiment 139
5.2.4 Biological and Chemical Analyses 141
5.2.5 Data Analysis 142

5.3 Results and Discussions
5.3.1 Inoculum Establishment in the Plant Rhizosphere 143
5.3.2 Soil Properties 146
5.3.3 Plant Biomass Accumulation 153
5.3.4 Nutrient Acquisition 156

5.4 Conclusion 159

CHAPTER 6. EFFECTS OF INOCULATION OF PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPRS) ON METAL UPTAKE BY BRASSICA JUNCEA

6.1 Introduction 161
6.2 Materials and Methods

6.2.1 Soil and Tailings 163
6.2.2 Plant 165
6.2.3 Preparation of Bacterial Inoculum 165
6.2.4 Pot Experiment 166
6.2.5 Chemical and Biological Analyses 166
6.2.6 Data Analysis 168

6.3 Results and Discussions

6.3.1 Isolation and Selection of Metal-resistant Bacterial Strain 168
6.3.2 Plant Biomass 169
6.3.3 Inoculum Establishment and Soil Enzyme Activity in the Rhizosphere and Nonrhizosphere of *B. juncea* 173
6.3.4 Effects of Bacterial Inoculation on Improvement of Soil Properties 175
6.3.5 Heavy Metal Extractability 179
6.3.6 Metal Uptake by *B. juncea* 180
6.3.7 Nutrient Acquisition by Plants 185

6.4. Conclusion 186

CHAPTER 7. MICROBES-ASSOCIATED PHYTOEXTRACTION BY AN INTERCROPPING SYSTEM CONSISTED OF *BRASSICA JUNCEA* AND *ZEA MAYS*

7.1 Introduction 190

7.2 Materials and Methods

7.2.1 Soil Preparation 193
7.2.2 Seeds of *Brassica juncea* and *Zea mays* and Microbial Inoculants 193
7.2.3 Experimental Design 194
7.2.4 Plant Analysis 195
7.2.5 Soil Analysis 196
7.2.6 Statistical Analysis 197

7.3 Results and Discussions

7.3.1 Basic Properties of Tested Soil 198
7.3.2 Interaction between Plant and Introduced Microorganisms in Terms of Plant Growth and Inocula Establishment 198
7.3.3 Uptake of Metals by Plants 207
7.3.4 Phytoremediation Effect 213
CHAPTER 8. GENERAL DISCUSSION AND CONCLUSION

8.1 Introduction 219
8.2 Responses of Microbes to the Toxicity of Metal 222
8.3 Effects of Microbial Inoculation on Metal Speciation and Bioavailability in Soils 226
8.4 Interactions between Soil Bacteria, Mycorrhizae and Plants 228
8.5 Effects of Microbial Inoculation on the Soil Properties and Plant Growth
 8.5.1 Plant Growth Promoting Rhizobacteria 230
 8.5.2 Arbuscular Mycorrhizal Fungi 231
8.6 Effects of Beneficial Microbes on Metal Uptake by Plants 233
8.7 Future Work
 8.7.1 Field trials: Microbe-associated Phytoremediation on Metal Contaminated Soils 236
 8.7.2 Roles of Beneficial Microorganisms in Phytoremediation of Complexly-contaminated Soils Caused by PAHs and Heavy Metals 236

REFERENCES 238

PUBLICATIONS 264

CURRICULUM VITAE 265