Immunomodulatory Effects of Tryptanthrin on Human Bronchial Epithelial Cells

YIU Nai Sum

A thesis submitted in partial fulfillment of the requirements
for the degree of
Master of Philosophy

Principal Supervisor: Dr. MAK Nai Ki

Hong Kong Baptist University

March 2005
Abstract

Cytokine is a group of low molecular weight glycoproteins produced by both immune and non-immune cells. One of the major functions of cytokines is to regulate the immune reactions. Influenza is caused by RNA viruses of the orthomyxovirus group. During influenza virus infection, bronchial epithelial cell is not only the primary target of infection, but also the source of pro-inflammatory cytokines and chemokines. Bronchial epithelial cell-derived cytokines have been shown to play an important in regulating airway inflammation. Control of influenza infection can be carried out by vaccination or by the use of antiviral or immuno-modulatory drugs.

Banlangen, a common name refers to Polygonum tinctorium, Isatis indigoticum and Strobilanthes cusia. These herbal plants are used for the treatment of various diseases in China, Korea and Japan. Tryptanthrin is one of the ingredients identified in these medicinal plants, tryptanthrin has previously been reported to mediate various biological activities, such as anti-microbial, anti-tumor, and the anti-inflammatory activities. However, the effects of tryptanthrin on the production of pro-inflammatory cytokines by influenza virus infected cells have not been investigated. In this study, we adopted the human bronchial epithelial cell line as a model to examine the effects of tryptanthrin on the production and secretion of cytokines by influenza virus infected bronchial epithelial cells. The expression and production of cytokines was determined using RT-PCR and ELISA method, respectively.

To evaluate the immunomodulatory activities of tryptanthrin, we have initially optimized the conditions on the influenza virus infected cell cultures. These included the evaluation of the toxicity of tryptanthrin, virus titer (A/NWS/33 and B/Lee) determination, and the cytopathic damage of virus infected bronchial epithelial H292 cells. Our results showed that tryptanthrin is not cytotoxic to H292 cell at the concentration up to 20 µM. And tryptanthrin was found to exert a cytostatic effect on the H292 by inhibiting the DNA synthesis. At a non-cytotoxic concentration, tryptanthrin slightly reduced the replication (4-fold reduction) of influenza A virus in H292 cells.
After the optimization of the culture conditions, the effects of tryptanthrin on cytokines expression by influenza virus infected bronchial epithelial H292 cells were examined. Both cytokines involved in the regulation of immunity (e.g. IL-6, IL-12) and inflammation (e.g. IL-1β, IL-8, MIP-1β, and RANTES) were studied. Tryptanthrin was found to differentially modulate the expression of IL-1β, IL-6, IL-8, IL-12 p35, MIP-1β, and RANTES in influenza A and influenza B virus infected H292. Tryptanthrin was found to increase the expression of IL-6 in influenza A or influenza B virus infected H292 cells. The expression of IL-12 p35, MIP-1β, and IL-8 was also significantly increased in influenza A virus infected cell. The results suggest that tryptanthrin may modulate the immune response by enhancing the expression of IL-6 (a cytokine involved in the protection against influenza virus infection), IL-8 (a chemotactic cytokine for neutrophil), and MIP-1β (a cytokine involved in T cell stimulation) in influenza virus infected epithelial cells.
Contents

Declaration i
Abstract ii
Acknowledgements iv
Contents v
Abbreviations ix
List of Tables xi
List of Figures xii

Chapter 1 Introduction 1
1.1 Biology of Influenza Virus 1
1.1.1 Types of Influenza Viruses 1
1.1.2 Viral Structure 3
1.1.3 Proteins of Influenza Virus 4
1.1.4 Life Cycle of Influenza Virus 5
1.1.4.1 Attachment and Penetration 5
1.1.4.2 Transcription and Translation 6
1.1.4.3 Replication of Viral RNA 6
1.1.4.4 Assembly and Release 6
1.1.5 An Ever-changing Virus 7
1.1.5.1 Antigenic Variation 7
1.1.5.2 Host Range 9
1.1.6 Symptoms and Diseases Caused by Influenza Virus Infection 12
1.2 Inflammation 13
1.2.1 Cytokines 15
1.2.2 Pro-inflammatory Cytokines 17
1.2.3 Production of Cytokines during Influenza Virus Infection 21
1.3 Prevention and Treatment of Influenza 23
1.3.1 Vaccination 23
1.3.2 Antiviral Drugs 23
1.3.3 Traditional Chinese Medicinal Herbs 24
1.3.3.1 Antiviral Chinese Medicinal Herbs—Banlangen 24
Aims of the Research 28

Chapter 2 Materials and methods 29
2.1 Materials 29
2.1.1 Cell Culture 29
2.1.1.1 Culture Media 29
2.1.2 Supplement of Culture Media 30
2.1.3 Complete Medium for Cell Culture 30
2.1.4 Buffers and Solutions 31
2.1.2 Influenza Viruses 31
2.1.3 Eggs for Cultivation of Influenza Viruses 31
2.1.4 General Chemicals 32
2.1.5 Solutions 33
Chapter 2 Measurements and Analysis

2.2.11 Measurements of IL-8 production by Enzyme-Linked Immunosorbent Assay (ELISA) ------------------------ 53
2.2.11.1 Preparation of Cell Culture for ELISA ------------------------ 53
2.2.11.2 Enzyme-Linked Immunosorbent Assay (ELISA) of IL-8 ------ 53

2.2.12 Western Blot Analysis -- 54
2.2.12.1 Protein Extraction -- 54
2.2.12.2 Determination of Protein Concentration ---------------------- 54
2.2.12.3 Protein Blotting -- 54
2.2.12.4 Membrane Blocking and Antibody Incubations --------------- 55
2.2.12.5 Detection of Proteins --------------------------------------- 55

Chapter 3 Effects of Tryptanthrin on Influenza Virus Infected Human Bronchial Epithelial Cells ------------------------------- 56
3.1 Introduction --- 56

3.2 Results -- 58
3.2.1 Detection of Tryptanthrin In Banlangen ------------------------ 58

3.2.2 Effects of Tryptanthrin on Human Bronchial Epithelial H292 Cells -- 58
3.2.2.1 Determination of cytotoxicity by the Trypan blue exclusion method -- 59
3.2.2.2 Determination of cell growth using 3H-Thymidine incorporation method --- 59

3.2.3 Antiviral effects of Tryptanthrin on Influenza Virus Infected H292 Cells --- 60
3.2.3.1 Cytopathic Effect of Influenza A/NWS/33 and B/Lee on Infected H292 Cells -- 60
3.2.3.2 Replication of Influenza A/NWS/33 and B/Lee in Human Bronchial Epithelial H292 Cells ----------------------------- 61
3.2.3.3 Effects of Tryptanthrin on the Replication of Influenza A/NWS/33 Infected H292 Cells ----------------------------- 62
3.2.3.4 Effects of Tryptanthrin on the Replication of Influenza B/Lee Infected H292 Cells ------------------------------- 63

3.2.4 Antiviral Effects of Tryptanthrin on Influenza Virus Infected MDCK Cells --- 63

3.3 Discussion --- 81
3.3.1 Detection of Tryptanthrin in Banlangen ------------------------- 81
3.3.2 Cytotoxicity of Tryptanthrin ------------------------------- 82
3.3.3 Anti-Proliferative Activity of Tryptanthrin ---------------------- 83
3.3.4 The Virus Replication and Induction of Cytopathic Effect by Influenza A/NWS/33 and B/Lee on H292 Cells ------------------ 83
3.3.5 Effects of Tryptanthrin on the Replication of Influenza A/NWS/33 and B/Lee Infected Cells ---------------------------- 83
3.3.6 Effect of Amantadine on the Cytopathic Effect of Influenza A/NWS/33 Infected Cells ------------------------------- 84
Chapter 4 Effects of Tryptanthrin on the Expression of Cytokines in Human Bronchial Epithelial Cells

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>85</td>
</tr>
<tr>
<td>4.2 Results</td>
<td>87</td>
</tr>
<tr>
<td>4.2.1 Effect of Tryptanthrin on the Expression of Cytokines in Influenza A Virus Infected Cells</td>
<td>87</td>
</tr>
<tr>
<td>4.2.2 Effect of Tryptanthrin on the Expression of IL-12 p35 in Influenza A Virus Infected Cells</td>
<td>88</td>
</tr>
<tr>
<td>4.2.3 Effect of Tryptanthrin on the Expression of Chemokines IL-8, RANTES and MIP-1 beta in Influenza A Virus Infected Cells</td>
<td>89</td>
</tr>
<tr>
<td>4.2.4 Effect of Tryptanthrin on the Expression of IL-1 beta and IL-6 in Influenza A Virus Infected Cells</td>
<td>90</td>
</tr>
<tr>
<td>4.2.5 Effect of Tryptanthrin on the Expression of chemokines IL-8 and RANTES in Influenza B Virus Infected Cells</td>
<td>90</td>
</tr>
<tr>
<td>4.2.6 Effect of Tryptanthrin on mRNA and Protein Expression in Infected Cells</td>
<td>91</td>
</tr>
<tr>
<td>4.3 Discussion</td>
<td>106</td>
</tr>
<tr>
<td>4.3.1 Effects of Tryptanthrin on the Expression of IL-1β</td>
<td>107</td>
</tr>
<tr>
<td>4.3.2 Effects of Tryptanthrin on the Expression of IL-6</td>
<td>107</td>
</tr>
<tr>
<td>4.3.3 Effects of Tryptanthrin on the Expression of IL-12 p35</td>
<td>108</td>
</tr>
<tr>
<td>4.3.4 Effects of Tryptanthrin on the Expression of IL-8</td>
<td>108</td>
</tr>
<tr>
<td>4.3.5 Effects of Tryptanthrin on the Expression of RANTE</td>
<td>109</td>
</tr>
<tr>
<td>4.3.6 Effects of Tryptanthrin on the Expression of MIP-1 β</td>
<td>109</td>
</tr>
</tbody>
</table>

Chapter 5 General Discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>111</td>
</tr>
<tr>
<td>5.2 Effect of Tryptanthrin on Human Bronchial Epithelial H292 Cells</td>
<td>111</td>
</tr>
<tr>
<td>5.3 Effect of Tryptanthrin on the Replication of Influenza A/NWS/33 and B/Lee Infected Cells</td>
<td>112</td>
</tr>
<tr>
<td>5.4 Effects of Tryptanthrin on the Expression of Cytokine mRNAs and Protein Production</td>
<td>112</td>
</tr>
<tr>
<td>5.5 Conclusion</td>
<td>117</td>
</tr>
<tr>
<td>5.6 Further Studies</td>
<td>118</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
</tr>
</tbody>
</table>

Curriculum Vitae

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
</tr>
</tbody>
</table>