Analysis of Polar Nitroaromatics in Groundwater
by using Solid-Phase Extraction and
Liquid Chromatography-Mass Spectrometry

MA Wai Tang

A thesis submitted in partial fulfillment of the requirements
for the degree of
Master of Philosophy

Principal Supervisor: Dr. CAI Zongwei

Hong Kong Baptist University

September 2004
Abstract

Underground water contamination by the toxic substances associated with 2,4,6-trinitrotoluene (TNT) production had aroused public concern. The contaminations are more serious especially in the vicinity of former ammunition plants. Recently, nitrotoluenesulfonic acids, nitrobenzoic acids and nitrobenzyl alcohols were found to be the major transformation products during the process. Their solubilities are assumed to be higher than the TNT, which implies a greater mobility in water. The high polarity nature definitely complicated the analysis.

Liquid chromatography coupled with mass spectrometry was found to be effective in tackling the analysis. Reversed-phase LC/High-resolution mass spectrometric (HRMS) methods for the determination of six nitrotoluenesulfonic acid, five nitrobenzoic acid and three nitrobenzyl alcohol type compounds in underground water were developed. HRMS analysis using negative ion electrospray (ESI) or atmospheric pressure chemical (APCI) ionization provided good selectivity and sensitivity for the detection. For the determination of nitrotoluenesulfonic acids and nitrobenzoic acids, 15N$_2$-labeled internal standard was incorporated for better quantitation and mass assignment. For nitrobenzyl alcohols determination, due to the lack of internal standards, fluctuation in signal sensitivity and results in larger relative standard deviation was observed. Structure elucidation and confirmation were accomplished by tandem mass spectrometry. Characteristic ions resulting from the loss of NO, and NO$_2$ from the [M-H] ions were detected.

Pre-concentration process using solid phase extraction (SPE) cartridge was promising. Co-polymer HLB SPE cartridge was used for the extraction of both toluenesulfonic and nitrobenzoic acids whereas traditional C$_{18}$ cartridge was used for
the extraction of benzyl alcohols. Recovery of better than 80 % was achieved when 10 mL of water sample was analyzed.

The combination of the SPE and LC-HRMS gave the method detection limits less than 80 ng/L, 2 µg/L and 2 µg/L for nitrotoluene sulfonic acids, nitrobenzoic acids and nitrobenzyl alcohols, respectively. The method had been applied for analyzing underground water samples collected from a site of a former ammunition plant. The contamination levels can be up to ppb levels.
Table of Contents

<table>
<thead>
<tr>
<th>Declaration</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Tables of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 Nitroaromatics

1.2 2,4,6-Trinitrotoluene as a Precursor of Nitroaromatic Contaminants

1.3 Degradation of TNT

1.4 Analytical Techniques for Nitroaromatics

1.5 Solid Phase Extraction Used for the Preparation of Environmental Samples

1.6 Aims of the Project

Chapter 2 Experimental

2.1 Materials

2.2 LC/QTOF-MS Analysis

Chapter 3 Determination of Nitrotoluenesulfonic Acids in Contaminated Water Samples

3.1 Introduction

3.2 Experimental

3.2.1 Material

3.2.2 Solid Phase Extraction

3.2.3 Recovery Test
Section 3.2.4 Quantitative Analysis of the Groundwater Samples

Section 3.3 Results and Discussions

3.3.1 LC/MS Method Development for the Qualitative Analysis

3.3.2 Recovery for Solid Phase Extraction

3.3.3 Detection Limits

3.3.4 Quantitative Analysis of the Groundwater Samples

Chapter 4 Determination of Nitrobenzoic Acids in Contaminated Water Samples

4.1 Introduction

4.2 Experimental

4.2.1 Materials

4.2.2 Solid Phase Extraction

4.2.3 Recovery Test

4.2.4 Quantitative Analysis of the Groundwater Samples

4.3 Results

4.3.1 Qualitative Analysis

4.3.1.1 Optimization of MS Detection

4.3.1.2 Optimization of Mobile Phase

4.3.1.3 Optimization of Ionization Source Parameters

4.3.1.4 Optimized Conditions

4.3.2 Quantitative Analysis

4.3.2.1 Recovery of Solid Phase Extraction

4.3.2.2 Detection Limits

4.3.2.3 Analysis of the Groundwater Samples

Chapter 5 Determination of Nitrobenzyl Alcohol in Contaminated Water Samples
5.1 Introduction 64

5.2 Experimental 65
 5.2.1 Materials 65
 5.2.2 Solid Phase Extraction 67
 5.2.3 Recovery Test 68
 5.2.4 Quantitative Analysis of the Groundwater Samples 68

5.3 Results and Discussion 70
 5.3.1 Qualitative Analysis 70
 5.3.1.1 Optimization of the HPLC Separation and MS Detection 70
 5.3.1.2 Optimization of the Mobile Phase 73
 5.3.2 Quantitative Analysis 76
 5.3.2.1 Recovery and Detection Limit 76
 5.3.2.2 Analysis of the Groundwater Samples 78

Chapter 6 Conclusion 80

List of References 83
Curriculum Vitae 90
List of Publications 91