A Mechanistic Study on the Photodynamic Effects of Pyropheophorbide-a Methyl Ester (MPPa) on Prostate Cancer PC-3M

TIAN Yuanyuan

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

Principal Supervisor: Dr. LEUNG Wing Nang

Hong Kong Baptist University

May 2004
Abstract

Photodynamic therapy is a promising treatment for cancer and other nonmalignant conditions, which involves the administration of a photosensitizing agent followed by exposure of the tissue to visible nonthermal light (400-760 nm). Photosensitizers are often taken up by malignant or dysplastic tissues with some selectivity, and light delivery can be targeted to the appropriate tissue. When the photosensitizer is illuminated with light of the appropriate wavelength, the molecule is excited. This produces a series of energy transfers leading to the liberation of singlet oxygen, a highly reactive and cytotoxic species, resulting in cell death. The combination of drug uptake in malignant tissues and selective light delivery has the potential to provide an effective tumor therapy with efficient cytotoxicity and limited damage to the surrounding normal tissue.

The first drug to be accepted by the FDA was Photofrin (trademark). Photofrin is a clinically used drug based on Hematoporphoryn derivatives (HPD). Although Photofrin is the most commonly used photosensitizer, it has significant side effects. Therefore, major effort has been invested in the development of new sensitizers. The objective of this study is to investigate the in vitro and in vivo efficacy of MPPa mediated photodynamic treatment of human prostate cancer PC-3M.
1. In the *in vitro* study, we aim to examine the photocytotoxicity of MPPa induced PC-3M cell death. PDT-induced apoptotic cell death has previously been shown in many cell lines. In this study, the mode of MPPa induced apoptotic cell death was also investigated.

2. In the *in vivo* study, we aim to establish an animal tumor model to evaluate the *in vivo* photodynamic efficacy of MPPa. The results would be very useful in the future application of this compound clinically.

In vitro study, the photocytotoxicity of MPPa in PC-3M cells showed a light- and drug-dose dependent manner and a low photodynamic dose (PD$_{50}$) was required to produce 50% cell killing. In addition, no significant dark cytotoxicity was observed at the dose range of 0.25 to 8µM. Experiments on MPPa-induced apoptosis were performed under the conditions of LC$_{75}$(2µM+55.6kJ/m2). By determining activities of caspase-3, 8, 9, we found MPPa mediated PDT induced apoptosis mainly via the mitochondrial/Casp-9/Casp-3 pathway. By the method of flow cytometry, we found the percent distribution of cells in G$_0$/G$_1$-phases decreased and G$_2$/M-phases increased obviously after MPPa mediated PDT while the percentage of cells in S-phase decreased slightly. These findings suggest that MPPa restrain the cell cycle progression from the more sensitive G$_0$/G$_1$-phases and led the fate of these cells to apoptosis. Cells in G$_0$/G$_1$-phases are sensitive to PDT, maybe because cells in S-phase and G$_2$/M-phases are busy synthesizing DNA and mitosing and uptake less MPPa than cells in G$_0$/G$_1$-phases. *In vivo* study, compared with the
control group, the growth of the implanted tumors was significantly inhibited, with reduced weight and volume, and the tumor volume and weight inhibition rate was 78.66% and 72.07% respectively. Slices of PC-3M tumor after PDT under light microscope and transmission electron microscope showed many apoptotic cells with nuclei condensation and more eosinophilicer cytoplasm. Few necrotic cells can be seen with the characteristic morphologic changes of cell injury, including cell swelling and rupture (loss of nuclear staining or karyolysis).

From the above experimental results, it is concluded that MPPa has a noticeable effect on PC-3M tumor. MPPa-mediated photodynamic therapy was an efficient therapy and is expected to be suitable for the treatment of human prostate cancer.
Table of Contents

<table>
<thead>
<tr>
<th>Declaration</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction to photodynamic therapy (PDT)

1.1 Concept of PDT 1
1.2 History of PDT 1
1.3 Mechanisms of Action 3
 1.3.1 Mechanisms of PDT reaction 3
 1.3.2 Mechanisms of cell and tumour destruction 5
 1.3.2.1 Selective uptake of photosensitizers 5
 1.3.2.2 Subcellular localization of photosensitizer 6
 1.3.2.3 Apoptosis and cell signalling 7
 1.3.2.4 Vascular effects of PDT 10
 1.3.2.5 Immunological effects of PDT 11
1.4 Photosensitizers 12
 1.4.1 Hematoporphyrin and porphyrin 12
 1.4.2 Hematoporphyrin derivative 16
 1.4.3 New photosensitizers 17
1.5 Light Sources 26
1.6 How is PDT Given? 30
 1.6.1 General procedure 30
 1.6.2 Tumor treatment 30
1.7 Current Status and Future of PDT 46
1.8 Features of PDT 48
Chapter 2 Materials and methods

2.1 Materials 54
2.2 MPPa 54
2.3 Light Source 55
2.4 Cell Culture 56
2.5 Determination of Cell Concentration 56
2.6 Photocytotoxicity Assay 56
2.7 MTT Reduction Assay 57
2.8 Dark Cytotoxicity 58
2.9 Determination of Activities of Caspase-3, 8 and 9 59
2.10 Determination of Protein by the Method of Bradford 60
2.11 Cell Cycle Analysis by Flow Cytometer 60
2.12 Animal Model Setup 61
2.13 Preparation of Specimen for Light Microscope 61
2.14 Preparation of Specimen for Transmission Microscope 63
2.15 Statistical Analysis 63

Chapter 3 Efficacy, apoptosis and changes of cell cycle induced by MPPa mediated PDT in PC-3M cells

3.1 Introduction 64
3.2 Specific Materials and Methods 65
3.3 Results and Discussions 66
 3.3.1 Photocytotoxicity of MPPa in PC-3M 66
 3.3.2 Dark cytotoxicity of MPPa in PC-3M 66
 3.3.3 Photocytotoxicity of MPPa in HUVEC 66
 3.3.4 Activity of caspase 3,8,9 in PC-3M induced by MPPa mediated PDT 69
 3.3.5 Cell Cycle Analysis by Flow Cytometer 70
3.4 Conclusion 71
Chapter 4 Efficacy, mode of death induced by MPPa mediated PDT in vivo

4.1 Introduction 80
4.2 Specific Materials and Methods 83
4.3 Results and Discussions 84
 4.3.1 Calculation of inhibition rate 84
 4.3.2 Observation under light microscope 85
 4.3.3 Observation under transmission electron microscope 86

Chapter 5 Future Work

5.1 Uptake and Localization of MPPa in PC-3M and HUVEC 109
5.2 Capacity of MPPa to Generate Singlet Oxygen 111

References 112

List of Publications 137

Curriculum Vitae 138