Risk Assessment of Organochlorine Pesticides and Polycyclic Aromatic Hydrocarbons in Fish Collected from Fish Ponds in the Pearl River Delta

KONG Kai Yip

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

Principal Supervisor: Prof. WONG Ming Hung

Hong Kong Baptist University

July 2004
Abstract

Hong Kong and South China are the most developed regions within China. The rapid socio-economic growth, industrialization and urbanization in these areas resulted in severe environmental problems. Persistent organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs) and organochlorine (OC) pesticides are transferred into aquatic food chains where they accumulate in fish and impose health hazards on human beings through consumption. Sediment, water and biotic samples including tilapia (*Tilapia mossambicus*), bighead carp (*Aristichthys nobilis*), grass carp (*Ctenopharyngodon idellus*), crucian carp (*Carassius auratus*), mandarin fish (*Siniperca chuatsi*), mud carp (*Cirrhina molitorella*), tilapia fingerling (*Tilapia mossambicus*), shrimp (*Palaeomonetes sp.* and *Macrobrachium sp.*) and apple snail (*Pomacea sp.*) were collected from different fishponds (Tanzhou, Sanjiao, Guangzhou, Shipai, Changan and Mai Po) located in the Pearl River Delta for the analyses of PAHs and OC pesticides.

Elevated levels of p,p'-DDT detected in the sediment and the very low ratio of p,p'-DDE to DDTs in fish samples suggested that recent release of DDT into the fishpond ecosystems. Mandarin fish, which belongs to the highest trophic level, seems to accumulate higher concentrations of PAHs and DDTs than other species. Furthermore, these POPs tended to build up in the monoculture ponds due to low nutrient and metabolic waste recycling. However, no evidence of biomagnification of PAHs and DDTs was observed in the food webs of freshwater fishponds, possibly due to the effects of artificial modification of the fishpond ecosystems. Bioconcentration and bioaccumulation could be major routes for the entry of organic pollutants into biota. Higher Biota-sediment accumulation factors of PAHs and DDTs were observed in filter and detritus feeders (shrimp, apple snail and mud carp) which are in frequent contact with sediments. The release of contaminated particles or sediments from the pond bottom to the water column could also act as a source of PAHs and DDTs which can be
bioconcentrated in the filter feeders (shrimps, fingerlings and bighead carps). The levels of DDTs in fish samples ranged from 0.5 to 62 ng g$^{-1}$ (wet wt.), with 35% of the fish samples exceeded the limit of 14.4 ng g$^{-1}$ (wet wt.) for human consumption (US EPA 2000), but the potency-weighted total concentrations of PAHs (0-0.2 ng g$^{-1}$ wet wt.) in all fish tissues were below the guideline value of 0.67 ng g$^{-1}$ (wet wt.) (US EPA 2000).

Tilapia purchased from the markets (with fish supplied from the mainland) showed higher concentrations of DDTs and PAHs than those collected from Hong Kong fishponds and gei wais, confirmed that the fishponds in the mainland are more polluted due to the rapid socio-economic growth in the region. The tilapia were heavily polluted by Pb, with the highest level (3519 ng g$^{-1}$ wet wt.) exceeded the EUROPA guideline (400 ng g$^{-1}$ wet wt.) 8 times, and Cr with 36% of the samples exceeded the China guideline of 500 ng g$^{-1}$ wet wt. for human consumption (NEPA, 1997). Populations like Chinese and most Asians who consume larger quantities of fish may be at risk. Tilapia collected from gei wais (Mai Po) showed the highest levels of Cr, which may also impose adverse effects on water birds. The use of comet assay (DNA breakage in contaminated tilapia) as a fast screening method in monitoring pollutants in fish showed a low potential for the range of pollutants (PAHs, DDTs, Cd, Cr, Pb) tested.
Table of Contents

Declaration i

Abstract ii

Acknowledgments iv

Table of Contents v

List of Tables x

List of Figures xiii

List of Plates xv

Chapter I Introduction

1.1 Background

1.1.1 What are persistent organic pollutants? 1

1.1.1.1 Polycyclic aromatic hydrocarbons (PAHs) 2

1.1.1.2 Organochlorine pesticides (OCPs) 6

1.1.2 Pathway of POPs to human beings 8

1.1.3 Harmful effects of POPs 10

1.1.4 Global POPs cycling 11

1.1.5 Inputs of POPs to the aquatic environment 12

1.1.6 Overview of the Pearl River Delta 13

1.1.7 Bioaccumulation of POPs 15

1.1.8 The current status of POPs contamination in Hong Kong and South China 16

1.1.9 Biomarkers as an indicator of environmental quality 18

1.2 Aims and objectives of present research 22
Chapter II Survey of Organochlorine Pesticides and Polycyclic Aromatic Hydrocarbons in Different Fish Species Collected from Different Fishponds

2.1 Introduction 25

2.2 Materials and Methods

2.2.1 Sample collection 27
2.2.2 Reagents and chemicals 31
2.2.3 Sample preparation and chemical analyses 31
2.2.4 The target compounds investigated 32
2.2.5 Gas chromatography conditions 34
2.2.6 Statistical analysis 34

2.3 Results

2.3.1 PAHs in sediments 35
2.3.2 OCPs in sediments 35
2.3.3 PAHs and OCPs in fishes 36
 2.3.3.1 Bighead carp 36
 2.3.3.2 Grass carp 39
 2.3.3.3 Crucian carp 39
 2.3.3.4 Tilapia 40
 2.3.3.5 Mandarin fish 41

2.4 Discussion

2.4.1 PAHs and DDTs in sediments 41
2.4.2 Comparison of PAHs and DDTs in different fish species 53
2.4.3 Risk assessment 56
2.4.4 Relationship between lipid content and POPs contamination in fish flesh 57

2.5 Conclusion 59
Chapter III Assessment of Toxic Potential of Organochlorine Pesticides and Polycyclic Aromatic Hydrocarbons in Different Trophic Levels of Fishponds

3.1 Introduction

3.2 Materials and Methods

- **3.2.1 Site description**
- **3.2.2 Sample collection**
- **3.2.3 Reagents and chemicals**
- **3.2.4 Sample preparation and chemical analyses**
 - **3.2.4.1 Extraction procedures for sediment and biota samples**
 - **3.2.4.2 Extraction procedures for water samples**
- **3.2.5 The target compounds investigated**
- **3.2.6 Gas chromatography conditions**
- **3.2.7 Statistical analysis**

3.3 Results

- **3.3.1 PAHs and OCPs in sediments**
- **3.3.2 PAHs and OCPs in water samples**
- **3.3.3 PAHs and OCPs in biota samples**
 - **3.3.3.1 Mai Po fishpond**
 - **3.3.3.2 Sanjiao fishpond**
 - **3.3.3.3 Shipai fishpond**
- **3.3.4 Biota-sediment accumulation factors (BSAFs) and bioconcentration factors (BCFs)**

3.4 Discussion

- **3.4.1 PAHs and DDTs in sediments**
- **3.4.2 PAHs and DDTs in pond waters**
- **3.4.3 PAHs and DDTs in biota samples**
- **3.4.4 Biota-sediment accumulation factor**
- **3.4.5 Bioconcentration factor**
- **3.4.6 Risk assessment**

3.5 Conclusion
Chapter IV Health Risk Assessment of Fish (Tilapia) from Local Markets and Fishponds in Hong Kong and Use of Comet Assay For Screening Genotoxic Pollutants

4.1 Introduction 106

4.2 Materials and Methods
 4.2.1 Sample collection 108
 4.2.2 Alkaline single cell gel electrophoresis (Comet Assay)
 4.2.2.1 Reagents and chemicals 110
 4.2.2.2 Procedures 110
 (a) Preparation of the single cell suspension 110
 (b) Alkaline single cell gel electrophoresis 112
 (c) Staining 113
 (d) Comet analysis 113
 4.2.3 PAHs and DDTs in tilapia 114
 4.2.4 Analysis of heavy metals 115
 4.2.5 Statistical analysis 115

4.3 Results
 4.3.1 Comet assay 116
 4.3.2 PAHs and DDTs analyses 116
 4.3.3 Heavy metals analyses 119
 4.3.4 Correlations between DNA breakage and levels of toxicants in fish tissues 119

4.4 Discussion
 4.4.1 Accumulation of PAHs and DDTs in tilapia 126
 4.4.2 Accumulation of heavy metals in tilapia 127
 4.4.3 Relationships between DNA breakage and bioaccumulation of PAHs and DDTs in tilapia 129
 4.4.4 Relationships between DNA breakage and bioaccumulation of heavy metals in tilapia 131

4.5 Conclusion 132
Chapter V General Discussion and Conclusion

5.1 Status of PAHs and DDTs contamination in freshwater fishponds
 5.1.1 Sediments 134
 5.1.2 Water 135
 5.1.3 Biota samples 135

5.2 Public health concern and risk assessment 136

5.3 Verification of health risk of freshwater fish Consumption in Hong Kong 137

5.4 The use of comet assay in contamination monitoring in fish 138

5.5 Comments on future studies 139

List of References 140

Appendices

Appendix I Newspaper reporting the probable application of DDT on preserved food in Guangzhou, China. 159
Appendix II Profiles of fishpond operations in the Pearl River Delta. 160
Appendix III International screening guidelines for PAHs and DDTs, and maximum permitted concentrations of heavy metals in fish (ng g⁻¹ wet wt.) for human consumption. 166
Appendix IV Toxicity Equivalency Factors for various PAHs. 166
Appendix V Results of the comet assay in liver cells (tail moment) and concentrations of POPs (ng g⁻¹) and heavy metals (ng g⁻¹) in liver of the tilapia collected from Hong Kong. 167
Appendix VI Results of the comet assay in liver cells (tail moment) and concentrations of the POPs (ng g⁻¹) and heavy metals (ng g⁻¹) in muscle tissues of the tilapia collected from Hong Kong. 169

Curriculum Vitae 171

List of Publications 172