Accumulation and Transformation of DDT and PCBs by
Phragmites australis and *Oryza sativa L.*

CHU Wing Kei

A thesis submitted in partial fulfillment of the requirements
for the degree of

Master of Philosophy

Principal Supervisor: Dr. ZHANG Jianhua

Hong Kong Baptist University

April 2004
Abstract

DDT (dichlorodiphenyltrichloroethane) and PCBs (polychlorinated biphenyls) are two of the Persistent Organic Pollutants (POPs) in the environment. They are chemical substances that persist in the environment, accumulate through the food web, and pose a risk of causing adverse effects to human health. DDT was used as pesticide in the past but now is banned after the discovery of its persistence and potential toxicological effects to human beings and the environment. PCBs is a class of synthetic chlorinated hydrocarbons characterized by two linked aromatic rings with one to ten chloride substitutes in different positions, which make up of total 209 congeners. PCBs are widely used in industrial process in the past due to their chemical inertness and heat-resistance. After several lethal accidents by PCBs were reported, the production and use of PCBs were banned. Due to their persistence in the environment and the potential risk to human beings, finding methods to remove them from the environment is a concern now, and the use of plants for the removal of such pollutants was suggested as one of the methods. The novelty of the present study is to investigate the ability of Phragmites australis (common reed) and Oryza sativa L. (rice) to accumulate and transform DDT and PCBs in the hydroponic environment. In this part, results showed that both Phragmites australis and Oryza sativa L. accumulated DDT and PCBs from hydroponic culture, and the pollutants were mainly accumulated within the roots and the translocation to the upper parts is relatively slow. Only Phragmites australis root has the ability to transform DDT into DDD and DDE and the transformation in other parts was not significant. In the accumulation of PCBs, it is believed that the degree of chlorination is the main factor that affects the amount of the uptake by the plants and adsorption is the first step in both DDT and PCB accumulation from hydroponic culture to the plant root. Further more, the potential of the plant crude enzyme extract to degrade and transform DDT and PCBs were also investigated. In this part, results showed that the root enzyme extracts of Phragmites australis significantly removed and transformed both DDT and PCBs within the incubation period while Oryza sativa L. did not. Chemical inhibition studies proved that the degradation and transformation of both DDT and PCBs by Phragmites australis enzymes were partly mediated by peroxidase and plant P-450 system. In addition, the PCBs that with high degree of chlorination were highly resist to degradation and transformation. In summary, results have provided information about the potential of Phragmites australis and Oryza sativa L. to remove DDT and PCBs from the hydroponic environment and should be useful in further investigation on the in-situ application of plant mediated remediation of persistent organic pollutants in the environment.
Table of Contents

Declaration

Abstract

Acknowledgements

Table of Contents

List of Figures

List of Tables

List of Abbreviations

Chapter 1 General Introduction

1.1. Persistent Organic Pollutants

1.1.1. Definition

1.1.2. Types of persistent organic pollutants

1.1.3. Chemical properties of persistent organic pollutants

1.1.4. Environmental fate and transport of persistent organic pollutants

1.1.5. DDT

1.1.5.1. Chemical properties

1.1.5.2. The production and consumption of DDT in the world

1.1.5.3. DDT accumulation in the environment and food chain

1.1.5.3.1. DDT contamination in Hong Kong

1.1.5.4. Adverse effects to human beings

1.1.5.4.1. Carcinogenicity of DDT
1.1.5.4.2. Neurotoxicity of DDT 10
1.1.5.4.3. Reproductive effects of DDT 11

1.1.6. PCBs 12
1.1.6.1. Chemical properties 12
1.1.6.2. The production and consumption of PCBs in the world 13
1.1.6.3. PCBs accumulation in the environment and food chain 14
 1.1.6.3.1. PCBs contamination in Hong Kong 16
1.1.6.4. Adverse effects to human beings 16
 1.1.6.4.1. Accidental exposure of PCBs reveals toxicity to human 17
 1.1.6.4.2. Carcinogenicity of PCBs 18
 1.1.6.4.3. Reproductive effects of PCBs 18

1.2. Phytoremediation 19
1.2.1. Environmental pollution and phytoremediation 19
1.2.2. Definition 19
1.2.3. Types of phytoremediation 20
1.2.4. Phytoremediation of organic pollutants 21

1.3. Phragmites australis 25
1.3.1. Classification 25
1.3.2. General characteristics 25
1.3.3. Growing habitat 26
1.3.4. The application of artificial constructed reed-bed systems 27

1.4. Oryza sativa 28
1.4.1. Classification 28
1.4.2. General characteristic 29
1.4.3. Rice production and its habitat 29

1.5. Objectives of the thesis 31

Chapter 2 Materials and Methodology 33

2.1. Sources of plants 33

2.2. Analysis of DDT and PCBs uptake by plants 34
 2.2.1. Source and preparation of DDT and PCBs 34
 2.2.2. Preparation of hydroponic culture solution 35
 2.2.3. Preparation of florisil® column and silica gel adsorption column 35
 2.2.4. Experiment setup 36
 2.2.4.1. Setup for Phragmites australis experiment 36
 2.2.4.2. Setup for Oryza sativa L. experiment 37
 2.2.5. Experiment control setup 38
 2.2.6. Extraction of DDT and PCBs within plants 39
 2.2.6.1. Extraction of DDT 39
 2.2.6.2. Extraction of PCBs 40

2.3. Analysis of DDT and PCBs transformation by plant enzymes 42
 2.3.1. Plant total enzyme extraction 42
 2.3.2. Source and preparation of DDT and PCBs 42
 2.3.3. Experimental setup 43
 2.3.4. Control setup 44
Chapter 3 Accumulation and transformation of DDT and PCBs in

Phragmites australis and *Oryza sativa* L. in hydroponic culture

3.1. Introduction

3.2. Materials and methods

3.2.1. Plants

3.2.2. Experiment setup

3.2.2.1. Experiment setup for *Phragmites australis*

3.2.2.2. Experiment setup for *Oryza sativa* L.

3.2.3. Extraction and detection of DDT and PCBs from plants

3.2.3.1. Extraction of DDT

3.2.3.2. Extraction of PCBs

3.3. Results

3.3.1. Accumulation and transformation of DDT in *Phragmites australis*

3.3.2. Accumulation of PCBs in *Phragmites australis*

3.3.3. Accumulation of DDT in *Oryza sativa* L.

3.3.4. Accumulation of PCBs in *Oryza sativa* L.

3.4. Discussion
3.4.1. Effectiveness of using *Phragmites australis* to remove DDT and PCBs in hydroponic medium and the distribution within the plant 63

3.4.2. The transformation of DDT in *Phragmites australis* 64

3.4.3. Distribution of DDT and PCBs within *Oryza sativa L.* after the spike 65

Chapter 4 Disappearance of DDT and PCBs in crude enzyme extract of

Phragmites australis and *Oryza sativa L.* 68

4.1. Introduction 68

4.2. Materials and methods 70

4.2.1. Total enzyme extraction 70

4.2.2. Experiment setup 70

4.2.3. Extraction and detection of DDT and PCBs from enzyme solution 71

4.3. Results 72

4.3.1. The disappearance of DDT in *Phragmites australis* enzyme extract 72

4.3.2. The disappearance of DDT in *Oryza sativa L.* enzyme extract 77

4.3.3. The disappearance of PCBs in *Phragmites australis* enzyme extract 82

4.3.4. The disappearance of PCBs in *Oryza sativa L.* enzyme extract 93

4.4. Discussion 104

4.4.1. Comparison on the removal and transformation rate of DDT and PCBs in *Phragmites australis* and *Oryza sativa L.* enzyme extracts 104

4.4.1.1. The disappearance and transformation of DDT 104

4.4.1.2. The disappearance of PCBs 106
4.4.2. Enzymatic reactions are involved in the removal and transformation of DDT and PCBs

Chapter 5 Conclusion

List of References

Appendix

Curriculum Vitae