Study on the Environmental Contamination and Mechanistic
Toxicology of 2,3,7, 8-Tetrachlorodibenzo-p-dioxin

LAI Keng Po

A thesis submitted in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Principal Supervisor: Dr. WONG Kong Chu, Chris
Hong Kong Baptist University
July 2004
ABSTRACT

Polychlorinated dibenzo-\(p\)-dioxins, such as 2,3,7,8-tetrachlorodibenzo-\(p\)-dioxin (TCDD) has been recognized as the most toxic man-made pollutants. They are characterized by their persistent, fat-seeking and endocrine disruptive natures. Their ubiquitous occurrence in the environment can facilitate their bio-transfer and the subsequent bio-accumulation in different tropic levels, imposing health hazards to living organisms. It is well-known that the major route of human exposure to TCDD is through food consumption, resulting in about 1 – 3 pg TEQ (toxicity equivalents)/kg body weight uptake per day. With reference to TCDD, the mechanism of action is known to involve an interaction with cytosolic aryl hydrocarbon receptor (Ah-receptor), followed by heterodimerization with an Ah-receptor nuclear translocator (Arnt) and finally, bind on the \(cis\)-acting dioxin responsive element (DRE). The Ah-receptor pleiotropic response could lead to diverse pathological consequences, including the alteration of growth regulation, malignant cell transformation and reproductive functions. In this study, an integrative approach including environmental to mechanistic perspectives, was adopted to study and decipher the contamination profile and biological toxicities of TCDD.

For the environmental monitoring aspect, using human breast milk sample accompanied with H4IIE/EROD model, our results indicated that the dioxin contamination profile in Southeastern China was comparable to other studies conducted elsewhere in the world. Moreover our data indicated that samples collected from the Guangzhou population were in general with higher level of dioxin contamination than that of detected in Hong Kong. With the background information obtained, \textit{de novo} biochemical interactions of TCDD
with endogenous hormones or some naturally purified/chemically synthesized compounds were examined in the same cell model. Our results identified that DEX had an additive effect on TCDD elicited CYP1A1/EROD expression. The interaction was glucocorticoids receptor dependent. Another novel pathway assessed was the receptor independent E2-mediated suppression. It is hypothesized that the suppression was mediated by a direct hindrance of TCDD/Ah receptor complex formation. Furthermore, we have characterized the activity of a natural compound, SLY-1 that acted as a partial Ah receptor antagonist. Its action was mainly targeted at the post-transcription level. The outcome of these studies would be useful for our better understanding on the biochemical interactions of TCDD with natural hormones/compounds, shedding light on the issue of *de novo* modulation of TCDD elicited toxicities and the associated pathological consequences. In addition, the results support the notion that the natural product could be developed as an antidote for treatment of TCDD elicited diseases.

In the final part of the thesis, TCDD elicited reproductive toxicities, with special reference to the male reproductive system were investigated and discussed. It is well known that Sertoli and Leydig cells play crucial roles in regulating the process of spermatogenesis. Hence primary rat Sertoli and Leydig cell models were established for the investigation. Biological consequences evoked by direct TCDD intervention were elucidated. We have demonstrated that TCDD can modulate aromatase, MIS, sertolin and testin expressions as well as E2 secretion in the Sertoli cells. The synthesis and secretion of progesterone and testosterone were considerably suppressed in TCDD treated Leydig cells. Along with this observation, a significant reduction of P450ssc was observed.
Collectively, this study demonstrated the crosstalk of TCDD with DEX, E₂ and SLY-1 in cellular level. Its toxicities to the male reproductive system are diverse and manifold.
TABLE OF CONTENT

Declaration ... i
Abstract ... ii
Acknowledgements ...
Table of Contents ... vi
List of Figures ... xiii
List of Tables .. xvi

CHAPTER 1: Literature Review

1. Persistent Organic Pollutants ... 1
 1.1. Pesticides ... 2
 1.2. Polychlorinated Biphenyls ... 5
 1.3. Dioxins ... 7
 1.4. Toxicity Equivalents (TEQ) ... 8
 1.5. Environmental Contamination and Biological Toxicity
 of Dioxin ... 11
 1.5.1 Environmental contamination of dioxin in HK and
 China ... 15
 1.6. Mechanistic Toxicity of Dioxin .. 18
 1.6.1. Aryl Hydrocarbon Receptor Mediated pathway 18
 1.7. Biological Effects of Dioxin ... 22
 1.7.1. Immunotoxicity of dioxin ... 22
 1.7.2. Neurotoxicity of Dioxin ... 24
 1.7.3. Hepatotoxicity of Dioxin ... 25
 1.7.4. Reproductive toxicity of Dioxin .. 26
 1.7.4.1. Female Reproductive Toxicity of Dioxin 25
 1.7.4.2. Male Reproductive Toxicity of Dioxin 27
1.8. Working Hypothesis Of The Present Study .. 29

CHAPTER 2: Dioxin-like Components in Human Breast Milk, Collected from Hong Kong and Guangzhou

2.1. ABSTRACT .. 30

2.2. INTRODUCTION .. 32

2.3. MATERIALS AND METHODS .. 35
 Cell culture and validation of TCDD-Ah Receptor mediated
 CYP1A1 mRNA and EROD assays .. 35
 Immunocytochemical staining .. 37
 Sample screening .. 37
 Statistical Analysis .. 38

2.4. RESULTS AND DISCUSSION ... 39
 Validation of TCDD-Ah Receptor mediated CYP1A1 mRNA and
 EROD assays .. 39
 Immunocytochemical staining .. 40
 Sample screening ... 40

 Table 1 ... 43

 Figures 1-3 .. 44
CHAPTER 3: Modulation of AhR-Mediated CYP1A1 mRNA and EROD Activities by 17β-Estradiol and Dexamethasone in TCDD Induced H4IIE Cells

3.1. ABSTRACT ... 47

3.2. INTRODUCTION .. 49

3.3. MATERIALS AND METHODS .. 52
 Effects of natural hormones on EROD activities in H4IIE cells .. 52
 Effects of the hormones on TCDD mediated EROD and CYP1A1 levels 53
 Preparation of CYP1A1 and actin standards for real-time PCR .. 53
 Real-time PCR ... 54
 Western blot analysis .. 54
 Effects of cycloheximide on Dex or 17β-estradiol modulated TCDD activated CYP1A1 mRNA and EROD activities in H4IIE cells ... 55
 Statistical analysis ... 56

3.4. RESULTS ... 57
 Effects of natural hormones on EROD activities in H4IIE cells ... 57
 Effects of the hormones on TCDD mediated EROD and CYP1A1 levels 57
 Real-time PCR and Western blot analysis .. 58
 Effects of cycloheximide on Dex or 17β-estradiol modulated TCDD activated CYP1A1 mRNA and EROD activities in H4IIE
3.5. DISCUSSION .. 60
Figures 1-7 .. 65

CHAPTER 4: Antagonism of Ah receptor-Mediated CYP1A1
mRNA Expression and EROD activity by
Natural Compound (SLY-1) in TCDD
Induced H4IIE Cells

4.1. ABSTRACT .. 74

4.2. INTRODUCTION ... 76

4.3. MATERIALS AND METHODS 78
 Cell Treatment and EROD assay 78
 Effects of SLY-1 on TCDD mediated EROD and CYP1A1
 expressions .. 79
 Preparation of CYP1A1,Cu-Zn-SOD, Mn-SOD, GST, catalase,
 GCS, GPx, GSR, p53 and GAPDH standards for real-time PCR ... 80
 Real-time PCR .. 81
 Statistical analysis .. 81

4.4. RESULTS ... 82

4.5. DISCUSSION .. 84
Figures 1-4 .. 87
CHAPTER 5: Effects of TCDD in Modulating the Expression of Sertoli Cell Secretory Products and Markers for Cell-Cell Interaction

5.1. ABSTRACT ... 92

5.2. INTRODUCTION ... 94

5.3. MATERIALS AND METHODS ... 97
 Sertoli cell culture ... 97
 Histochemical staining of 3β-hydroxysteroid dehydrogenase (3β-HSD), alkaline phosphatase activities and testosterone (T) induction assay .. 98
 Cell treatment and cytotoxicity test .. 98
 RNA Extraction and PCR product verification ... 99
 PCR primer dropping ... 100
 EROD assay ... 101
 Western blotting ... 101
 Lactate secretion assay ... 102
 E2 assay ... 102
 Statistical analysis .. 103

5.4. RESULTS ... 104
 Characterization of the Sertoli cell model .. 104
 Induction of CYP1A1 expression ... 104
 Expressions of aromatase, MIS, sertolin and testing .. 105
CHAPTER 6: Effects of TCDD on Steroidogenesis and Antioxidant System of Rat Leydig Cells

6.1. ABSTRACT ... 119

6.2. INTRODUCTION ... 121

6.3. MATERIALS AND METHODS .. 123
 Primary culture of rat Leydig cells .. 123
 Histochemical staining of 3β-hydroxysteroid dehydrogenase (HSD) and testosterone (T) induction assay 124
 Cell treatment .. 124
 Progesterone determination .. 125
 Effects of TCDD on mRNA levels of steroidogenic enzymes, CYP1A1 and antioxidant system 125
 Real-time PCR .. 127
 Statistical analysis .. 127

6.4. RESULTS ... 128
 Characterization of the isolated Leydig cell model 128
 Effect of TCDD on testosterone secretion of hCG and hCG+DEX treated Leydig cells .. 128
 Effect of TCDD on the expression of antioxidant enzymes and p53 in hCG-treated Leydig cells 130

6.5. DISCUSSION ... 131