The Study of Novel Dioxin
Antagonist-Euxanthone and its Derivatives

ZHANG Qi

A thesis submitted in partial fulfillment of the requirements
for the degree of
Master of Philosophy

Principal Supervisor: Dr. Ricky N.S. WONG
Hong Kong Baptist University
December 2003
Abstract

2,3,7,8-Tetrachlorodibenzo-\(p\)-dioxin (TCDD), a widespread environmental pollutant, has been shown to act as an agonist of the aryl hydrocarbon receptor (Ah receptor) subsequently leading to adverse effects. While much work has been done on the toxicity mechanism of TCDD, some attention begins to turn to discerning the mechanism by which phytochemicals are utilized to inhibit TCDD toxicity, such as carcinogenesis and hepatotoxicity.

The present study disclosed a novel antagonist, named PW-1, which was extracted from Chinese medicine herb *Polygala caudata*. The antagonist showed significant suppression of TCDD-induced EROD activity at a dose-dependent manner as well as *CYP1A1* gene expression in HepG2 cells. Furthermore, six synthetic derivatives of PW-1, namely CYL-1, -2, -3, -4, -5, and -6, also showed to possess inhibitory effects on TCDD-induced EROD activity in a dose-response manner. The PW-1 and all its derivatives *per se* did not significantly result in induction of EROD activity as compared to TCDD. However, CYL-4, PW-1, CYL-1, CYL-2, and CYL-3 at the concentration of 1.65 \(\mu\)M, 1.95 \(\mu\)M, 2.5 \(\mu\)M, 5.0 \(\mu\)M and 8.2 \(\mu\)M, respectively, can give rise to a 50% inhibition (IC\(_{50}\)) of EROD activity generated by induction of 0.5 nM TCDD. Almost complete inhibition was observed by CYL-4, PW-1 and CYL-1 at the concentration of 12.5 \(\mu\)M. Real-time PCR as well as agarose gel electrophoresis were employed to evaluate the validity of the *CYP1A1* gene expression changes induced by TCDD and the antagonistic effects of PW-1 on TCDD.
On the other hand, cDNA microarray technology was employed to uncover the possible antagonistic mechanism of PW-1 against TCDD. For this, approximately two thousands of liver-specific cDNAs were firstly prepared from a human liver lambda cDNA library with the titer of 2.97×10^{11} pfu/ml. These cDNAs were then printed on polylysine-coated slides by an arraying robot. The microarrays thus made were hybridized simultaneously with three probes which were labeled separately with a type of fluorescent dye, namely Alexa Fluor 546 for TCDD treatment, Alexa Fluor 488 for TCDD plus PW-1, and Alexa Fluor 647 for solvent control. Finally, the hybridization signals were scanned by the laser confocal scanner, and the digitized fluorescence signals were normalized by an approach of total measured fluorescence intensity. As a result, fifty candidate genes were chosen for sequencing. By blasting the obtained sequences in the GenBank database, 21 genes were identified as unique to the GeneBank. Among them, 18 genes were more than 2.0 fold, 2 genes were without change, and only one gene was less than 1-fold change. Among these 18 genes, seven were firstly disclosed to be induced by TCDD. Obviously, the expressions of most genes identified were altered by exposure to TCDD, and most of genes up-regulated by TCDD were down-regulated by PW-1, such as the gene encoding Alpha-1-microglobulin/bikunin precursor (AMBP); the gene encoding Retinoid X receptor, alpha (RXRA); the gene encoding complement component 3 (C3). An antagonistic mechanism of PW-1 against TCDD was deduced in the present study. Especially, an interleukin-6 (IL-6)-mediated regulation pathway of TCDD function was also proposed.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 General Introduction 1

1.2 Dioxin 2
1.2.1 Nature of Dioxin 2
1.2.2 Action Mechanism of Dioxin 3

1.3 Biological Effects of Dioxin 4
1.3.1 *In Vivo* Biological Effects 7
1.3.1.1 In Human 7
1.3.1.2 In Laboratory Animals 8
1.3.1.3 Apoptosis 9
1.3.1.4 Oxidative Stress 10
1.3.2 *In Vitro* Biological Effects 11

1.4 Bio-analytical Techniques for Analyzing Dioxin 12
1.4.1 Biomarker 12
1.4.1.1 EROD 13
1.4.1.2 AHH 14
1.4.1.3 Chemical Marker-Vitamin A 14
1.4.1.4 CYP1A1 mRNA 15
1.4.2 DNA Microarray 16
1.4.3 Bioassay (Reporter Gene Expression Assay) 18
1.4.3.1 CALUX 18
1.4.3.2 GRAB 19
1.4.3.3 EGFP 21

1.5 Antagonism of Dioxin 22
1.5.1 Antagonist 22
Chapter 2 Identification of Euxanthone (PW-1) as a Novel TCDD Antagonist

2.1 Introduction

2.2 Materials and Methods
 2.2.1 Materials
 2.2.1.1 Culture Media for HepG2 Cells
 2.2.1.2 Reagents for MTT Cytotoxicity Assay
 2.2.1.3 Reagents for Ethoxyresorufin-O-deethylase (EROD) Assay
 2.2.1.4 CYP1A1 Gene Expression Assay
 2.2.2 Methods
 2.2.2.1 Cell Culture and Treatment
 2.2.2.2 Ethoxyresorufin-O-dealkylase (EROD) Assay
 2.2.2.3 MTT Cytotoxicity Assay
 2.2.2.4 Total RNA Isolation
 2.2.2.5 Real-time RT-PCR
 2.2.2.5.1 Preparation of cDNAs
 2.2.2.5.2 Real-time PCR

2.3 Results
 2.3.1 Effect of TCDD on EROD Activity in HepG2 Cells
 2.3.2 Effects of PW-1 and Its Synthetic Derivatives on EROD Activity in HepG2 Cells
 2.3.3 Inhibitory Effects of Euxanthone (PW-1) and Its Synthetic Derivatives on EROD Activity Induced by TCDD in Intact HepG2 Cells
 2.3.4 Real-Time PCR Quantification of the Effect of Euxanthone (PW-1) on CYP1A1 Expression
2.3.5 Effect of Alpha-naphthoflavone (ANF) on EROD Activity 38
2.3.6 Effect of 7-ketocholesterol (7-KC) on EROD Activity 39
2.3.7 Cytotoxicity of Euxanthone (PW-1) 39
2.4 Discussion 40

Chapter 3 Determination of Antagonism Mechanism of Euxanthone (PW-1) via Three-color cDNA Microarray Technology

3.1 Introduction 54

3.2 Materials and Methods 56

3.2.1 Materials 56
3.2.1.1 Materials for Preparation of cDNA Array 56
3.2.1.2 Materials for Preparation of cDNA Probe 57
3.2.1.3 Materials for Hybridization 57

3.2.2 Methods 58
3.2.2.1 Preparation of cDNA Microarray 58
3.2.2.1.1 Recovery of cDNA-containing Phagemids From Uni-ZAP XR Vector 58
3.2.2.1.1.1 Preparation of the E.coli Host Strains (Strains XL1-Blue MRF' and SOLR) 58
3.2.2.1.2 Titer of the ExAssist™ Interference-Resistant Helper Phage 58
3.2.2.1.3 Titer of the Human Liver Lambda cDNA Library Using Blue-White Selection 59
3.2.2.1.4 In Vivo Mass Excision of the pBluescript Phagemid From the Uni ZAP XR Vector 59
3.2.2.1.5 Phagemid Transformation and Blue-White Color Selection 60
3.2.2.1.6 Lager-scale Isolation of pBluescript Phagemid Using Montage™ Plasmid Miniprep™ Kit 60
3.2.2.1.2 PCR Amplification of cDNA 61
3.2.2.1.3 Agarose Gel Electrophoresis Analysis 62