A Dual Channel Location Estimation System for Mobile Computing

CHAN Ka Chun

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

Principal Supervisor: Dr. Joseph Kee-Yin, NG
Hong Kong Baptist University
May 2003
Abstract

A dual channel system, which is based on the GPS and the GSM Network, is being investigated to compensate the problem of the lost of GPS signals in providing location services to the mobile users in urban areas. In this design, GSM positioning algorithms will be used as an alternative method to provide location estimations, when GPS signal is lost in blind spot areas. Although GSM positioning algorithms based on signal attenuation may not be the most promising approach for providing location estimation, signal strength however is the only common attribute available among various kind of mobile network. Together with the fact that tall buildings are populated in metropolitan areas like Hong Kong, the cell layout in these areas is different from other cities. This research is an investigation and a revisit in search of a set of location estimation algorithms based on signal attenuation to work with GPS, so as to develop a dual channel positioning system. With the technical support from a local mobile phone operator, we have constructed and conducted several real world experiments for our investigation. The results are promising.
Table of Contents

Declaration i

Abstract ii

Acknowledgement iii

Contents iv

List of Figures v

List of Tables vi

1 Introduction 1
 1.1 Background .. 1
 1.2 Motivation .. 2
 1.3 Contributions of the Thesis 3
 1.3.1 Dual Channel System Design 3
 1.3.2 Algorithms development based solely on the GSM network ... 4
 1.3.3 Algorithm development based on calibration 4
 1.4 Outline of the Thesis 4

2 Related Works 5
 2.1 Overview of GPS ... 5
 2.2 Overview of GSM .. 7
 2.3 Related Works for GSM Positioning 9
 2.3.1 FCC Rules .. 9
 2.3.2 Network-based Technologies 10
2.3.3 Terminal-based Technologies .. 16
2.4 Circular Trilateration .. 17

3 The Design of a Dual Channel Positioning System 21
 3.1 Overall System Architecture 21
 3.1.1 Acquisition of GPS Signal 21
 3.1.2 Lost of GPS Signal ... 22
 3.1.3 Network Information from the GSM Network 22
 3.2 Problem Identification .. 25
 3.3 Positioning Algorithms based on Center of Gravity (CG) 26
 3.3.1 Fine-tunings ... 27
 3.4 Positioning Algorithm from Maximum Likelihood 29
 3.4.1 Calibration for each Base Station 30
 3.4.2 Calculation of Maximum Probability by Maximum Likelihood 34
 3.4.3 Location Estimation System for the Dual Channel System ... 35

4 Implementation ... 38
 4.1 Technologies behind the implemention of the Dual Channel System 38
 4.1.1 Programming Environment 38
 4.1.2 Protocols and Controls 39
 4.1.3 Digital Map ... 41
 4.1.4 Standard of GPRMC 45
 4.2 Algorithm Development Platform 47
 4.3 Application Development Platform 49

5 Experiments .. 53
 5.1 Algorithms Comparison .. 53
 5.1.1 Field Test I ... 53
 5.1.2 Field Test II ... 73
 5.2 Dual Channel System Drive Test 77

6 Conclusion and Future Works .. 84
 A Detailed Information and Results from Field Test I 86
B Detailed Information and Results from Field Test II 92
C Format of protocol in Nokia 61xx 95
Bibliography 97
Curriculum Vitae 101