Numerical Solutions for the Navier-Stokes Equations and the Fokker-Planck Equations using Spectral Methods

FOK Chin Man

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Prof. TANG Tao

Hong Kong Baptist University

August 2002
Abstract

The main purpose of this thesis is to develop an efficient numerical methods for the computation of viscous incompressible flows as described by the Navier-Stokes equations. The emphasis is on spectral methods coupled with a second order semi-implicit time stepping procedure. The second topic of this thesis is concerned with a Hermite spectral approach for the Fokker-Planck equations which are defined in an infinity domain. The emphasis is to establish a convergence theory for the spectral method approach.

In chapter 1 a set of governing equations for incompressible flows is derived from invoking the physical laws of conservation. The conservation of mass and momentum leads to the Navier-Stokes equations.

In chapter 2 a second order finite difference method based on the streamfunction-vorticity formulation of the Navier-Stokes equations is presented. Numerical boundary conditions for the vorticity are discussed. Runge Kutta time stepping and its stability are also investigated. The numerical scheme is suited for the computation of both low and high Reynolds number flows. The resulting method performs well when used to compute the regularized cavity flow.

Chapter 3 provides the background of the spectral methods, including relevant theories in the Sobolev space and some computational aspects. Some results on the Hermite spectral approach appear to be original.

In chapter 4 an accurate scheme for the time-dependent incompressible Navier-
Stokes equations in terms of the primitive variables on a non-staggered grid is proposed. The novelty of the scheme lies primarily in a simple, consistent and accurate numerical approximation of the Neumann boundary condition for the pressure Poisson equation. Its use avoids the need for both fractional-step time discretization and staggered grids traditionally required for the most popular numerical methods based on the primitive variable formulation. In addition, the proposed scheme is coupled with spectral-Galerkin and semi-implicit time stepping methods. Excellent results are obtained by applying the scheme to 2D test problems with various values of the Reynolds number. A spectral accuracy is observed in space, and the unconditional stability of the scheme is verified numerically.

In chapter 5 the proposed scheme in Chapter 4 is applied to two test problems. The first one is a regularized cavity flow and the other one is the impulsively started flow around a cylinder.

In chapter 6 the convergence theory of a class for combined spectral-finite difference methods applied to the Fokker-Planck equation is established. It is shown that the Hermite based spectral methods are convergent with spectral accuracy in some weighted Sobolev space. The spectral convergence rate is demonstrated by a number of numerical experiments. A velocity scaling factor is used in the Hermite basis function and is shown to greatly improve the accuracy and effectiveness of the Hermite spectral approximation, with no increase in workload. The results based on this chapter will be published by *Mathematics of Computation*. Its electronic version in *Mathematics of Computation* can be found in www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-01-01365-5.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiii</td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Basic Conservation Laws</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Similitude</td>
<td>6</td>
</tr>
</tbody>
</table>
1.3 Stream function - Vorticity Formulation 8

Chapter 2 Reynolds Number Boundary Condition 11

2.1 Description of the Scheme ... 12

2.2 Implementing Slip Boundary Condition 13

2.3 Temporal Discretization Methods ... 13

2.4 Numerical Test .. 17

Chapter 3 Spectral Method ... 24

3.1 Overview ... 26

3.2 Orthogonal Functions in Sobolev Spaces 26

3.3 Pseudospectral method ... 40

3.4 Differentiation matrices for polynomial basis function 43

3.5 Pseudospectral method for two-point BVPs 45

3.6 Spectral-Galerkin Method .. 48

3.7 2D Non-homogeneous Neumann Problem 57

3.8 2D Mixed Boundary Problem ... 61
Chapter 4 An Accurate Pressure Poisson Solver Scheme 65

4.1 Formulation ... 66

4.2 Outline of APPS scheme 67

4.3 Semi-implicit second-order APPS scheme 68

Chapter 5 Numerical Experiments for 2-D NSE 80

5.1 A Transformation ... 80

5.2 Treatment of the non-homogeneous Dirichlet boundary problem .. 81

5.3 A Driven Cavity Problem 82

5.4 Impulsively started flow around a cylinder 90

Chapter 6 Spectral-finite difference method for the Fokker-Planck equations 104

6.1 Background of the Fokker-Planck equation 105

6.2 Hermite spectral-finite difference method 110

Chapter 7 Conclusion 145

Bibliography 148