Empirical Studies toward DRP Constructs and a Model for DRP Development for Information Systems Function

HA Wai On

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Philosophy

Principal Supervisor: Dr. Vincent W.S. Chow

Hong Kong Baptist University

July 2002
ABSTRACT

This thesis has two main contributions. First, this thesis proposes and validates a set of Disaster Recovery Planning (DRP) constructs for Information System Function (ISF). Second, this thesis examines a DRP development by studying the relationships between DRP constructs for ISF. These results are further explained below.

This thesis identifies fourteen DRP constructs from an extensive literature review. This thesis adopts an organizational system model as a mean to study a DRP development, by treating the validated DRP constructs as part of model components in the proposed model.

The verification of the proposed DRP constructs and model development is based on a database collected from a questionnaire survey. A total of 500 questionnaires were mailed to potential participants, 129 usable questionnaires were collected. The response rate is thus reported as 26.7%.

Through the convergent validity test, fourteen constructs are validated as the DRP critical success factors for ISF. These fourteen DRP constructs are: "Top management commitment", "Policy and goals", "Steering committee", "Risk assessment and impact analysis", "Prioritization", "Minimum processing requirement", "Alternative site", "Backup storage", "Recovery team", "Training", "Testing", "Documentation", "Maintenance", and "ISF personnel participation".

ii
In the proposed DRP development, the path analysis is adopted to analyze the relationships between those validated DRP constructs, and is based on the concept of the organizational system model. The model has five main components, namely, "Top management leadership", "Management infrastructure sophistication", "Process management efficacy", "Stakeholder participation", and "Quality performance".

In this thesis, model component "Top management leadership" is represented by the DRP construct "Top management commitment". Model component "Management infrastructure sophistication" is represented by DRP constructs "Policy and goals", and "Steering committee". Model component "Process management efficacy" constitutes of four model sub-components "DRP analysis", "DRP design", "DRP implementation", and "DRP post-implementation". Whereas, model component "DRP analysis" is represented by three DRP constructs "Risk assessment and impact analysis", "Prioritization", and "Minimum processing requirement". Model component "DRP design" is represented by three DRP constructs "Alternative site", "Backup storage", and "Recovery team". Model component "DRP implementation" is represented by three DRP constructs "Training", "Testing", and "Documentation". Model component "DRP post-implementation" is represented by the DRP construct "Maintenance". Model component "Stakeholder participation" is represented by the DRP construct "ISF personnel participation". At last, model component "Quality performance" is represented by a model construct "Product quality".

iii
The findings shown that the proposed DRP constructs play a significant and positive direct/indirect effects on others. It is also revealed in the proposed model that these DRP constructs contribute to the "Product quality" of DRP. The results shown that the proposed DRP development consists of a process sequential flow of: 1) "Top management leadership", 2) "Management infrastructure sophistication", 3) "Process management efficacy". Model component "Stakeholder participation" is considered as a monitoring mechanism to "Process management efficacy".
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Purpose, Scope and Research Justification</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Overviews of the Research Development</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Organization of This Thesis</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER 2: LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Planning for Disasters</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1 Concept and Definition of Disasters</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Types of Planning for Disasters</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3 Importance of DRP for ISF</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Disaster Recovery Planning</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1 Success Factors of DRP for Organizations</td>
<td>8</td>
</tr>
<tr>
<td>2.2.2 Success Factors of DRP for Functional Units</td>
<td>10</td>
</tr>
<tr>
<td>2.2.3 A List of DRP Constructs</td>
<td>11</td>
</tr>
<tr>
<td>2.3 DRP Constructs and Its Measurement Items</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Quality Performance</td>
<td>36</td>
</tr>
</tbody>
</table>
CHAPTER 3: METHODOLOGY

3.1 Research Development ... 38
3.2 Statistical Analysis .. 44
 3.2.1 Factor Analysis ... 47
 3.2.2 Path Analysis .. 47
3.3 Instrument Development ... 48
3.4 Research Sampling ... 49

CHAPTER 4: SAMPLING PROFILES

4.1 Sample Profile ... 51
4.2 Mean Scores of Proposed DRP Constructs and Model Construct "Product quality" ... 53

CHAPTER 5: RELIABILITY AND VALIDITY OF THE INSTRUMENT

5.1 Reliability ... 55
 5.1.1 Reliability of the Proposed DRP Constructs 56
 5.1.2 Reliability of the Proposed Model Components 57
5.2 Discriminant Validity .. 58
 5.2.1 Discriminant Validity of the Proposed DRP Constructs 58
 5.2.2 Discriminant Validity of the Proposed Model Components 60
5.3 Content Validity .. 61

CHAPTER 6: MODEL SOLUTIONS TO THE PROPOSED DRP CONSTRUCTS

6.1 Validity of the Proposed DRP Constructs 62
6.2 Interpretation of DRP Constructs ... 64

CHAPTER 7: MODEL SOLUTIONS TO THE PROPOSED DRP DEVELOPMENT

7.1 Model Solutions .. 69
7.2 Interpretation of Direct Effects .. 70
7.2.1 Model Component "Top management leadership".. 70
7.2.2 Model Component "Management infrastructure sophistication"................. 75
7.2.3 Model Component "DRP analysis".. 80
7.2.4 Model Component "DRP design".. 81
7.2.5 Model Component "DRP implementation"... 82
7.2.6 Model Component "DRP post-implementation"... 84
7.2.7 Model Component "Stakeholder participation"... 85
7.3 Interpretation of Indirect Effects.. 91
 7.3.1 Model Component "Top management leadership"...................................... 93
 7.3.2 Model Component "Management infrastructure sophistication"............... 96
 7.3.3 Model Component "Stakeholder participation"... 98
7.4 Interpretation of Total Effects.. 99

CHAPTER 8: CONCLUSION

8.1 Overview of Findings.. 102
8.2 Contributions of the Thesis.. 104
8.3 Limitations.. 105

REFERENCES... 108

APPENDICES

Appendix A: Questionnaire... 116
Appendix B: LISREL Programs of Solving the Path Diagram in Figure 7.1........... 122
Appendix C: LISREL Programs of Solving the Path Diagram in Figure 7.2........... 123

Curriculum Vitae... 124