Development and Application of Surfactant-mediated Methods for the Extraction and Analysis of Biological and Herbal Materials

CHOI Pik Kwan

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

Principal Supervisor: Dr. HUIE Wah Kit, Carmen

Hong Kong Baptist University

October 2002
Abstract

In the first part of this thesis, the feasibility of employing aqueous non-ionic surfactant solutions as an alternative solvent system in accelerated solvent extraction (ASE) is demonstrated for the first time using the roots of American ginseng as model solid samples. When compared to the use of pure water or methanol, the presence of a common non-ionic surfactant (Triton X-100) in water at a concentration above its critical micelle concentration was shown to enhance the amount of pharmacologically active ingredients (ginsenosides) extracted from ginseng roots. The advantages of using aqueous non-surfactant solutions were also demonstrated by comparing extraction performances between ultrasonic-assisted extraction and ASE methods. Furthermore, the combination of ASE and cloud point extraction was shown to be a new and effective approach for the rapid sample preconcentration of herbal materials prior to analysis by high-performance liquid chromatography.

In the second part of this thesis, the cloud point phase separation phenomenon of a non-ionic surfactant, Triton X-100, was used for the extraction and preconcentration of several biological important molecules, i.e., porphyrin carboxylic acids and zinc protoporphyrin, in urine. The effectiveness of cloud point extraction was shown by investigating the effects of different extraction conditions on the extraction of various
urinary porphyrins. It was found that porphyrins could be successfully extracted under acidic medium, with the addition of ammonium sulfate for the induction of cloud point phase separation/preconcentration.

Furthermore, the addition of an anionic surfactant, SDS, as an additive in HPLC mobile phases was shown to be useful in minimizing sample preparation steps, such as protein removal, so that direct injection of the physiological samples in the chromatographic system is possible, and highly reproducible chromatographic peaks can be obtained. The cloud point extraction method with preconcentration using Triton X-100 followed by HPLC with a mobile phase containing SDS was developed for the fluorimetric determination of porphyrins in urine with detectability at the ng/L level.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>viii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Diagrams</td>
<td>xii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xiii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 Aims of the project

1.2 Classification of surfactants

1.3 Characteristics and properties of surfactants

1.3.1 The aggregation of surfactant molecules

1.3.2 Factors influencing the aggregation, CMC and solubilization power of surfactants

1.3.3 Cloud point property of nonionic surfactants

1.4 Applications of surfactants

1.5 Analytical applications of cloud point extraction
Chapter 2 Accelerated solvent extraction of active ingredients (ginsenosides) from medicinal plants using aqueous non-ionic surfactant solutions

2.1 Introduction 27

2.1.1 Working principle of ASE 27
2.1.2 Review on the applications of ASE 32

2.2 Experimental section 34

2.2.1 Chemicals 34
2.2.2 Preparation of ginseng samples 35
2.2.3 Accelerated solvent extraction 35
2.2.4 Ultrasonic-assisted extraction 35
2.2.5 Cloud point extraction and preconcentration 36
2.2.6 Analysis of the ginseng extracts by HPLC and UV absorbance detection 37

2.3 Results and discussion 38

2.3.1 Comparison of different solvent systems for the extraction of ginsenosides 38
2.3.2 Effects of pressure and temperature using methanol and aqueous non-ionic surfactant solutions as the solvent system 44
2.3.3 Comparison of UAE and ASE methods for the extraction of ginsenosides 50
2.3.4 Cloud point preconcentration prior to HPLC analysis ginsenosides 55

2.4 Concluding remarks 58
Chapter 3 Cloud point extraction / preconcentration and HPLC analysis of zinc protoporphyrin and porphyrin carboxylic acids in urine

3.1 Introduction 60

3.2 Experimental section 64
 3.2.1 Chemicals 64
 3.2.2 Cloud point extraction and preconcentration procedures 65
 3.2.3 Analysis of cloud point extract of porphyrins by HPLC and fluorescence detection 66

3.3 Results and discussion 67
 3.3.1 The thermal stability of porphyrins 67
 3.3.2 Effect of pH 69
 3.3.3 Effect of the concentration of ammonium sulfate 71
 3.3.4 Effect of Triton X-100 concentration 72
 3.3.5 Effectiveness of CPE for the preconcentration of porphyrins 74
 3.3.6 Working concentration range of CPE of porphyrins 82

3.4 Concluding remarks 84

Chapter 4 References 86

Curriculum Vitae 94