Anti-tumour and Anti-angiogenic Effects of Euxanthone

TSANG Hing Yan

A thesis submitted in partial fulfillment of the requirements
for the degree of
Master of Philosophy

November, 2001

Hong Kong Baptist University
Abstract

Plants of *Polygona sp.* have long been used as folk medicines to improve the learning and memory process. The roots of *Polygona* have also been used as sedative agent and anti-tumor drug in some Chinese medicines. Both naturally occurring and synthetic xanthone derivatives have been reported to mediate anti-tumor activities on human cells *in vitro*. In the current study, the potential anti-tumor and anti-angiogenic effects of euxanthone isolated from the medicinal herb *Polygona caudata* were investigated. Murine neuroblastoma (Neuro 2A, subclone BU-1) was used as a model to study the anti-tumor activities, and the human umbilical vein endothelial cells (HUVECs) was employed as a model to evaluate the anti-angiogenic activities of euxanthone.

In the studies of anti-tumor activity, euxanthone (50 - 100 μM) was found not only to inhibit the growth and arrest BU-1 at G2/M phase, but also to induce the morphological differentiation of the cells. The morphological differentiation of BU-1 cell was associated with the outgrowth of neurite and the enlargement of cell bodies. Previous studies suggested that protein kinase C (PKC) signaling pathway may be involved in the neuronal differentiation of Neuro-2A cells. Thus, the effects of PKC inhibitor on the growth and neuronal differentiation of euxanthone-treated BU-1 cells were also examined. Significant reduction of euxanthone-induced neuritogenic effect was observed when the conventional PKC isoform specific inhibitor Gö6976 was included in the culture. The results suggest that the conventional PKC isoforms may be involved in euxanthone-induced neuritogenesis in the BU-1 cells. Axonal (NF-H and tau) and dendritic (MAP-2) markers were employed to characterize the nature of
induced neuritic outgrowth in euxanthone-treated BU-1. Laser scanning confocal microscopy was used to study the distribution of these neuronal markers. A mixed phenotype of axon- and dendrite-like processes was observed 5 days after euxanthone treatment. These data suggested that euxanthone might be one of the anti-tumor compounds in the medicinal plant *Polygala caudata*.

In the second part of the study, the anti-angiogenic effect of euxanthone on HUVECs was examined. Euxanthone was found to inhibit the *in vitro* migration and proliferation of HUVECs. The growth inhibition of HUVECs was also supported by the results from the flow cytometric analysis. The proportion of HUVECs in S-phase was reduced after euxanthone treatment. The induction of morphogenesis of HUVECs, namely changing from the typical cobblestone appearance into elongated spindle shape, was observed after euxanthone treatment. Different *in vitro* and *in vivo* assays (*in vitro* tube formation assay and *in vivo* chick chorioallantoic membrane study) were evaluated on the effect of euxanthone on the vessel formation. The *in vitro* 3-D tube formation assay was finally selected in this study. The anti-angiogenic effect was also observed in the *in vitro* tube formation on Matrigel. It has been previously reported that cell adhesion molecules including platelet endothelial cell adhesion molecules-1 (PECAM-1) and cadherin-5 are critical molecules expressed on HUVECs for tube formation. In this study, PECAM-1 and cadherin-5 were found to express mainly at the cell junction of HUVECs. Euxanthone did not altered the expression level of these two adhesion molecules as revealed by the flow cytometric analysis. Inhibition of HUVEC migration might be responsible for the anti-angiogenic effect of euxanthone. The data generated in the study allow us to further
investigate the potential anti-angiogenic effects of euxanthone in other \textit{in vivo} angiogenic models.
Table of Contents

Declaration
Abstract
Acknowledgments
Table of Contents
List of Abbreviations
List of Tables
List of Figures

Chapter I Introduction

1.1. The Nervous System

1.1.1. Architecture and cytoskeletons of neurons
1.1.1.1. Structural proteins of cytoskeleton in neurons
1.1.1.2. Microtubules - an important determinant of cell architecture
1.1.1.3. Involvement of microfilaments in intracellular transport and cell movement
1.1.1.4. Intermediate filaments - the prominent constituents of nervous system

1.1.2. Neuroblastoma cells

1.1.3. Pathology and clinical features of neuroblastoma
1.1.3.1. Origin of neuroblastoma
1.1.3.2. Histology of neuroblastoma
1.1.3.3. Clinical features of neuroblastoma

1.1.4. Diagnosis and investigations of neuroblastoma
1.1.4.1. Tumor markers
1.1.4.2. Serum markers
1.1.4.3. Tumor cell DNA content
1.1.4.4. N-myc oncogene activation
1.1.4.5. Gene expression

1.1.5. Clinical staging of neuroblastoma

1.1.6. Treatment of neuroblastoma

1.1.7. Murine neuroblastoma, Neuro-2A

1.1.8. Protein kinase C (PKC) signaling pathway

1.2. The Chinese medicines
1.2.1. Medicinal herbs as drugs and diet supplements

1.2.2. Xanthones

1.2.3. Nature of euxanthone

1.3. The angiogenesis

1.3.1. Angiogenesis process

1.3.2. Regulation of angiogenesis and angiogenic diseases

1.3.3. Clinical applications of angiogenesis research
 1.3.3.1. Anti-angiogenic therapy: a novel weapon to fight cancer
 1.3.3.1.1. Role of angiogenesis in tumor development
 1.3.3.1.2. Therapeutic strategies of anti-angiogenesis
 1.3.3.1.3. Challenges to anti-angiogenic therapy
 1.3.3.1.4. Combination of anti-angiogenic and other kinds of therapies
 1.3.3.2. Therapeutic angiogenesis

1.3.4. Endothelial cell adhesion molecules
 1.3.4.1. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31)
 1.3.4.2. Cadherin

1.3.5. Review on the assays for angiogenesis used in the study
 1.3.5.1. In vitro assays for angiogenesis
 1.3.5.1.1. Endothelial cell migration assay
 1.3.5.1.2. Endothelial cell proliferation assay
 1.3.5.1.3. Three-dimensional differentiation: in vitro capillary tube formation
 1.3.5.2. In vivo models for angiogenesis
 1.3.5.2.1. Chick embryo chorioallantoic membrane (CAM) assay

1.4. Aims of Study

Chapter II Materials and Methods

2.1. Materials

2.1.1. Cell culture
 2.1.1.1. Culture media for neuroblastoma BU-1 cells
 2.1.1.2. Culture media for human umbilical vein endothelial cells (HUVECs)

2.1.2. Effects of euxanthone on neuroblastoma
 2.1.2.1. Reagents to measure of morphological differentiation
 2.1.2.2. Reagents for MTT cytotoxicity assay
 2.1.2.3. Reagents for cell cycle analysis
 2.1.2.4. Reagents for $[^3]$H-thymidine incorporation assay
 2.1.2.5. Immunocytochemical staining of axonal and dendritic markers
Chapter III Effect of Euxanthone on Neuroblastoma (BU-1 cells)

3.1 Introduction 63

3.2 Results 64

3.2.1 Cytotoxicity of euxanthone 64

3.2.2 Induction of morphological differentiation 64
3.2.2.1 Morphological differentiation of neuroblastoma cells 64
3.2.2.2 Phenotypes of differentiated neuroblastoma cells 65

3.2.3 Anti-proliferative activity of euxanthone on BU-1 cells 66
Chapter V General Discussion

5.1. Induction of neuronal differentiation and the anti-tumor activities 121
5.2. Involvement of PKC signaling in neuronal differentiation 122
5.3. Characterization of neuritic outgrowth 124
5.4. Controlling of tumor growth using anti-angiogenic drugs 125
5.5. Conclusion 127
5.6. Further studies 128

References 130

Lists of Publications 158

Curriculum Vitae 159