Neural Networks for Optimization

CHEUNG Ka Kit

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

August 2001

Hong Kong Baptist University
Abstract

Several neural network models are proposed in this thesis. These neural network models are established mainly based on the projection method. The projection method is well known for solving variational inequalities and constrained optimization problems in an iterative fashion. However, we only consider continuous-time neural network, which could be described by a set of ordinary differential equations. Firstly, we consider optimization problems with simple constraints. We have proved that our neural network model is well defined and the solution is unique. Also, the main result is the global convergence of the neural network and the equilibrium point is the corresponding solution of the optimization problem. Secondly, we apply the projection method to N-stage optimal control problems. The trajectory of the neural network for N-stage optimal control problems is unique and converges for any given initial point. The equilibrium point is the corresponding solution of the optimal control problem. At last, we focus on general constrained optimization problems. Two neural network models are introduced such that the equilibrium point of the corresponding dynamic system satisfy the Karush - Kuhn - Tucker (KKT) conditions. Numerical implementations showed the convergence of the projection method for neural network models. The neural network model for solving general constrained optimization problems also converge to the solution for most cases in our simulations.
Contents

Declaration i

Abstract ii

Acknowledgements iii

Table of Contents iv

Chapter 1 Introduction 1

1.1 Background ... 1

1.2 Preliminaries ... 3

1.3 Nonlinear Constrained Problems 6

1.4 Unconstrained Optimal Control Problems 7

1.5 Objectives ... 10

Chapter 2 Projection Methods 12

2.1 Introduction to Projection Methods 12
2.2 Existence and Uniqueness of Projection Methods 17
2.2.1 Projection Methods for Optimization Problems 17
2.2.2 Projection Methods for Optimal Control Problems 21
2.3 Convergence and Stability Analysis .. 24
2.3.1 Optimization Problems ... 24
2.3.2 Optimal Control Problems .. 29

Chapter 3 Nonlinear Constrained Problems 32
3.1 Introduction ... 32
3.2 Variational Inequalities and Nonlinear Complementarity Problems 34
3.3 A Neural Network Model .. 37
3.4 A Modified Neural Network Model .. 41

Chapter 4 Numerical Implementation ... 43
4.1 Projection Methods for Optimization Problems 43
4.2 Projection Methods for Optimal Control Problems 47
4.3 Nonlinear Constrained Problems ... 52

Chapter 5 Conclusions and Further Development 61
5.1 Conclusions ... 61
5.2 Further Development .. 62