Molecular Biological and Neurochemical Studies in a Parkinson’s Disease Model

LAI Suk King

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

November 2001

Hong Kong Baptist University
Abstract

Parkinson's disease (PD) is a motor disorder that is characterized by a depletion of dopaminergic neurons in the substantia nigra pars compacta of the basal ganglia. After dopamine denervation, glutamatergic pathways to the striatum (Str) and within the basal ganglia become overactive. Glutamate and its receptors have been said to involve in the pathogenesis of PD. Administration of the ionotropic glutamate receptor antagonists may have direct antiparkinsonian action in animal models of PD. Therefore, the major objectives of the present study were to characterize the changes of ionotropic glutamate receptor subunits in the 6-hydroxydopamine (6-OHDA)-lesioned rats, a model of PD. In addition, the effects of administration of antisense oligonucleotides specific for N-methyl-D-aspartate (NMDA) receptor one (NR1) subunit (ANR1) were also investigated using normal and 6-OHDA-lesioned rats. Another important issue in the study is whether it is possible to interfere with the course of neuronal injury that eventually lead to PD. Thus, investigation was conducted to examine the metabolic changes following 6-OHDA lesion in the substantia nigra (SN). These studies could provide background information for designing protective means against injury to the dopaminergic neurons.

The present study was divided into four parts. The first part aimed to identify the changes in levels of mRNA expression of ionotropic glutamate receptors were conducted in the rat Str from unilaterally 6-OHDA lesioned rats. When compared with the contralateral Str without lesion, level of NR1 mRNA was significantly higher (+27.95%) but the level of GluR1 mRNA was significantly lower (-15.41%) in the lesioned side. No significant modulations was observed in other NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate acid (AMPA) receptor subunits. In addition, modulations of levels of glutamate receptor proteins were investigated by immunofluorescence with image analysis. The intensity of GluR1 immunoreactivity was found to decrease (-23.35%) in the lesioned side. At the cellular level, a decrease in intensity of GluR1 immunoreactivity was found in perikarya of presumed medium spiny neurons (-16.49%) but not in the parvalbumin-positive striatal interneurons. However, NR1 immunoreactivity was found to be unchanged in the Str ipsilateral to the lesion. These results indicate that there are differential modulations of different ionotropic glutamate receptors in the Str after the 6-OHDA lesion and the glutamate receptors are likely to be involved in the pathogenesis of PD.

In the second part of the study, a single dose of ANR1 was applied unilaterally in the Str of normal rats in order to investigate the effects of ANR1 on the gene expression of NMDA receptor subunits gene. After 1 day of ANR1 treatment, ipsilateral rotation behaviors that were induced by apomorphine were found in the treated animals. Reductions in the levels of expression of NR1 (-20.6%) and NR2A (-19.7%) mRNAs
were found in the ANR1-treated striatal tissues by RT-PCR. There was no change in the levels of NR2B, NR2C and NR2D mRNAs. After two days, Western blotting experiments showed that there were decreases in the levels of expression of NR1 (-27.6%) and NR2A (-19.2%) proteins in the ANR1-treated striatal tissues. In addition, NR1 immunoreactivity was found to decrease in intensity in the ANR1-treated Str. At the cellular level, intensity of NR1 immunoreactivity in perikarya of presumed medium spiny neurons was found to decrease. These results indicate that a single dose of ANR1 modifies the expression of NR1 mRNA and protein in neurons in the Str. The modification in the expression of NR1 has differential effects in the expression of NR2 subunits. Gene expression of the native NR subunits is likely to be a dynamic process. The change in gene expression of the NR subunits in the Str may have a profound effect on the motor behaviors of rats.

Thirdly, a single dose of ANR1 was administrated into the Str ipsilateral to the lesion in 6-OHDA-lesioned rats. After one days of injections, the apomorphine-induced rotation was significantly attenuated (number of turn per minute: 0.81 ± 0.48). After two days of treatment, a significantly reduction in number of rotation was still observed (numbers of turns per minute: 4.0±0.5). A slight increase in the levels of NR1 mRNA expression (+ 3.251%) was shown by RT-PCR in the ANR1-treated Str. However, no significant change was found in the expression of NR1 proteins by western blotting experiments. Furthermore, no observable changes of NR1 immunoreactivity were seen in the Str of the lesioned side. At the cellular level, a reduction of NR1 immunoreactivity was seen in perikarya of presumed medium spiny neurons (- 28.63%). These results as a whole indicate that ANR1 has efficacy in antiparkinsonian effects in modulation of motor behaviors of parkinsonian animals and block the abnormal gene expression of NR1 receptor after the lesion. ANR1 is therefore a potential agent for treatments of PD.

In the last part of this study, attempt was made to identify the cause of cell injury in the 6-OHDA-lesioned rats by examining the expression of metallothionein-I (MT-I) and zinc (Zn) ions. Intense MT-I immunoreactivity was found to be highly expressed in the astrocytes of the SN after the lesion. In addition, Zn was found to accumulate neuronal elements of the SN after the lesion. These results indicate that MT-I and Zn ions may be involved in the cell death mechanisms of the dopaminergic neurons in the SN.

Results of the present study as a whole can provide evidence that glutamate receptors, MT-I and Zn ions are involved in the pathogenesis of PD. Blockage of NR1 receptor by ANR1 is useful in reduction of symptoms of PD and may be a potential agent for therapy of PD in the future.
Table of Contents

Declaration ... i
Acknowledgements ii
Abstract ... iii
Table of Contents v
List of Tables xvi
List of Figures xvii
List of Abbreviations xix

Chapter 1 Literature Review

1.1 The basal ganglia 1
 1.1.1 The structure of basal ganglia 1
 1.1.2 Basal ganglia circuitry 2
 1.1.2.1 Inputs to the basal ganglia 2
 1.1.2.2 Outputs from the basal ganglia .. 2
 1.1.2.3 Major pathways of the basal ganglia 2
 1.1.2.4 Feedback pathway 3
 1.1.2.5 Neurotransmitters in the basal ganglia 4
 1.1.3 Input nucleus of the basal ganglia -- the striatum 4
 1.1.3.1 Neuronal subpopulations 4
 1.1.3.2 Medium spiny neurons 5
 1.1.3.3 Striatal interneurons 6
 1.1.3.3.1 Cholinergic interneurons 6
 1.1.3.3.2 GABAergic interneurons 6
 1.1.3.3.3 Somatostatin/neropeptide Y/ nitric oxide synthetase–positive interneurons 7
 1.1.4 Output nucleus of the basal ganglia -- the substantia nigra 7
 1.1.4.1 Neurons in the substantia nigra 7
 1.2 Motor control by the basal ganglia 8
1.3 Glutamate in the basal ganglia

1.3.1 Classification of glutamate receptors

1.3.1.1 NMDA receptors

1.3.1.2 AMPA receptors

1.3.1.3 Glutamate receptor and glutamate excitotoxicity

1.4 Zinc and neurodegeneration

1.4.1 Zinc in the nervous system

1.4.2 The neurotoxicity of Zinc

1.4.3 Zinc and Metallothionein

1.4.4 Zinc, NMDA receptors and neuronal cell death

1.5 Glutamate and Parkinson’s disease

1.5.1 Pathogenesis of Parkinson's disease

1.5.2 Overactivity of the glutamate pathways in Parkinson’s disease

1.5.3 Current treatments of Parkinson’s disease

1.5.3.1 Levodopa

1.5.3.2 Neurosurgery

1.5.4 Changes in glutamate levels in Parkinson’s disease

1.5.5 Animal models of Parkinson’s disease

1.5.6 Changes in glutamate receptor in Parkinson’s disease and animal models

1.5.6.1 Findings by in situ hybridization

1.5.6.2 Findings by ligand binding studies

1.5.6.3 Findings by immunocytochemistry and immunoaautoradiography

1.5.7 Blockage of glutamate receptor as a therapy of Parkinson’s disease

1.5.7.1 NR2B antagonists: CP-101, 606

1.5.7.2 NMDA antagonists: MK801

1.5.7.3 Using antisense specific for NMDA receptor subunits

1.5.8 MT changes in an animal model of Parkinson’s disease
1.6 Objectives of the present thesis

Chapter 2 Evaluation of the 6-OHDA-lesioned rat model

2.1 Overall sequence of procedures
2.2 Animals
2.3 Unilateral lesions
 2.3.1 Six-hydroxydopamine-lesions
 2.3.2 Oligonucleotides lesions
 2.3.3 Behavioral Screening
 2.3.3.1 6-OHDA lesioned rats
 2.3.3.2 Oligonucleotides lesioned rats
 2.3.3.2.1 Statistical analysis of rat rotation tests
2.4 Reverse transcriptase – polymerase chain reaction
 2.4.1 Total RNA preparation
 2.4.2 cDNA preparation and PCR assay
2.5 Western blotting analysis
 2.5.1 Total protein preparation
 2.5.2 Western blotting
2.6 Semi-quantitative analysis of RT-PCR and western blot results
2.7 Immunocytochemistry and histofluorescence
 2.7.1 Tissue preparation
 2.7.2 Immunofluorescence
 2.7.3 Double immunofluorescence
 2.7.4 N-(6-Methoxy-8-quinonyl)-p-Toluene-Sulfonamide Histofluorescence
 2.7.5 Control for immunocytochemistry
 2.7.5.1 Control for immunofluorescence
 2.7.5.2 Control for double immunofluorescence
2.7.6 Preparation for fluorescent microscopy or laser scan confocal microscopy

2.8 Semi-quantitative analysis of the intensity of immunofluorescence

2.8.1 Laser scan confocal microscopy analysis

Chapter 3 Changes in gene expression of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate and N-methyl-D-asparate glutamate receptors in the striatum of 6-hydroxydopamine-lesioned rat.

3.1 Introduction

3.1.1 Objectives

3.2 Materials and Methods

3.2.1 Animals

3.2.2 Unilateral six-hydroxydopamine-lesioned

3.2.3 Rat rotation tests

3.2.4 Reverse transcriptase – polymerase chain reaction

3.2.4.1 Total RNA preparation

3.2.4.2 cDNA preparation and PCR assay

3.2.4.3 Semi-quantitative analysis of RT-PCR

3.2.5 Immunocytochemistry

3.2.5.1 Tissue preparation

3.2.5.2 Immunofluorescence

3.2.5.3 Double immunofluorescence

3.2.6 Control for immunocytochemistry

3.2.7 Preparation laser scan confocal microscopy

3.2.8 Semi-quantitative analysis of the intensity of immunofluorescence

3.3 Results

3.3.1 Effects of nigrostriatal denervation on the gene expression of AMPA-type and NMDA-type glutamate receptor subunits in the striatum
3.3.2 Effects of nigrostriatal denervation on the immunoreactivity for AMPA-type glutamate receptor subunits in the striatum

3.3.3 Effects of nigrostriatal denervation on the immunoreactivity for NMDA-type glutamate receptor subunits in the striatum

3.4 Discussion

3.4.1 Down-regulation of GluR1 glutamate receptor in the striatum after 6-OHDA lesion

3.4.2 Up-regulation of NR1 mRNA in the striatum after 6-OHDA lesions

3.5 Conclusion

Figure 3.1 Co-amplification of GluR1-3, NR1 and NR2B subunits with G3PDH in the striatum obtained from animals treated with 6-OHDA into the medial forebrain bundle and from the control animals

Table 3.1 Semi-quantitative analysis of the relative intensity of AMPA and NMDA receptor subunits mRNA expression after unilateral dopaminergic depletion in the rat striatum

Figure 3.2 Immunofluorescence micrographs of the 6-OHDA lesioned rat striatum immunostained to reveal immunoreactivity for GluR1.

Figure 3.3 Color fluorescent micrographs of the 6-OHDA lesioned rat striatum double immunostained to reveal immunoreactivity for GluR1 together with immunoreactivity for parvalbumin (PV).

Figure 3.4 Immunofluorescence micrographs of the 6-OHDA lesioned rat striatum immunostained to reveal immunoreactivity for GluR2 and GluR2/3.

Figure 3.5 Immunofluorescence micrographs of the 6-OHDA lesioned rat striatum immunostained to reveal immunoreactivity for GluR4.

Figure 3.6 Immunofluorescence micrographs of the 6-OHDA lesioned rat striatum immunostained to reveal immunoreactivity for NR1 and NR2B.

Table 3.2 Relative intensity of AMPA and NMDA receptor subunits immunofluorescence after unilateral dopaminergic depletion in rat striatum.
Chapter 4 Changes in expression of N-methyl-D-asparate receptor subunits in the rat striatum after a single dose of antisense oligonucleotide specific for N-methyl-D-asparate receptor 1 subunit

4.1 Introduction

4.1.1 Objectives

4.2 Materials and Methods

4.2.1 Preparation of oligonucleotides

4.2.2 Animals

4.2.3 Surgery

4.2.4 Behavioral Screening

4.2.5 Reverse transcriptase – polymerase chain reaction

4.2.5.1 Total RNA preparation

4.2.5.2 cDNA preparation and PCR assay

4.2.6 Western blotting analysis

4.2.6.1 Total protein preparation

4.2.6.2 Western blotting

4.2.7 Semi-quantitative analyses of reverse transcriptase – polymerase chain reaction and western blot results

4.2.8 Immunocytochemistry

4.2.8.1 Tissue preparation

4.2.8.2 Immunofluorescence

4.2.9 Control for immunocytochemistry

4.2.10 Preparation for microscopy and semi-quantitative analyses of the intensity of immunofluorescence

4.3 Results

4.3.1 Induction of rotational behavior by apomorphine after intrastratial oligonucleotide administration

4.3.2 Effects of ANR1 on the gene expression of NMDA receptor subunits in the striatum
4.3.3 Effects of ANR1 on the protein expression of NMDA-type glutamate receptor subunits in the striatum

4.3.4 Immunoreactivity for NMDA-type glutamate receptors subunits in the striatum

4.4 Discussion

4.4.1 Effects of ANR1 on NR1 subunit glutamate receptor

4.4.2 Effects of ANR1 on NR2 subunit glutamate receptor

4.5 Conclusion

Figure 4.1 The rotation/min count after 1 day of treatment apply into the rat striatum

Figure 4.2 The rotation/min count after 2 days of treatment apply into the rat striatum

Figure 4.3 Co-amplification of NR1, NR2 subunits and G3PDH in the striatum obtained from animals treated with antisense oligonucleotide specific for NR1 and from control animals

Figure 4.4 Western blotting analyses of the levels of NR1, NR2 and NSE proteins in the striatum obtained from animals treated with ANR1 and from control animals.

Figure 4.5 Immunofluorescence micrographs of the striatum immunostained to reveal immunoreactivity for NR1.

Chapter 5 Anti-parkinsonian effects of antisense oligonucleotide specific for N-methyl-D-asparate receptor one subunit in the 6-hydroxydopamine lesioned rats.

5.1 Introduction

5.1.1 Objectives

5.2 Materials and Methods

5.2.1 Preparation of oligonucleotides

5.2.2 Animals

5.2.3 Unilateral six-hydroxydopamine lesioned

5.2.3.1 Surgery

5.2.3.2 Behavioral Screening

5.2.4 Administration of antisense oligonucleotide specific for NR1
5.2.4.1 Surgery
5.2.4.2 Rat rotation tests
5.2.4.3 Statistical analyses of rat rotation tests
5.2.5 Reverse transcriptase – polymerase chain reaction
 5.2.5.1 Total RNA preparation
 5.2.5.2 cDNA preparation and PCR assay
5.2.6 Western blotting analyses
 5.2.6.1 Total protein preparation
 5.2.6.2 Western blotting
5.2.7 Semi-quantitative analyses of reverse transcriptase – polymerase chain reaction and western blot results
5.2.8 Immunocytochemistry
 5.2.8.1 Tissue preparation
 5.2.8.2 Immunofluorescence
5.2.9 Control for immunocytochemistry
5.2.10 Preparation for microscopy and semi-quantitative analyses of the intensity of immunofluorescence

5.3 Results
 5.3.1 Induction of rotational behavior by apomorphine after intrastriatal administration of oligonucleotides to the 6-OHDA lesioned rats
 5.3.2 Effects of ANR1 on the expression of NR1 receptor mRNA in the striatum of the 6-OHDA lesioned rats
 5.3.3 Effects of ANR1 on the protein expression of NR1 receptor in the striatum of the 6-OHDA lesioned rats
 5.3.4 Effects of ANR1 on the expression of NR1 immunoreactivity in the striatum of the 6-OHDA lesioned rats

5.4 Discussion
 5.4.1 ANR1 reverse the motor deficits caused by the 6-OHDA lesion
 5.4.2 Blockage of NR1 gene expression by ANR1: the underlying molecular mechanisms of behavioral modulation
5.4.3 Use of ANR1: pros and cons

5.5 Conclusion

Figure 5.1 The rotation/min count after 1 day of treatments apply into the striatum of 6-OHDA lesioned rats

Figure 5.2 The rotation/min count after 2 days of treatments apply into the striatum of 6-OHDA lesioned rats.

Figure 5.3 Co-amplification of NR1 and G3PDH in the striatum obtained from 6-OHDA lesioned animals treated with or without ANR1-treated and from those control animals: saline-treated, SNR1-treated or sham operated of rat striatum.

Table 5.1 Semi-quantitative analyses of the relative intensity of NR1 receptor subunits mRNA expression after different treatments applied in the 6-OHDA lesioned rat striatum

Figure 5.4 Western blotting analyses of the levels of NR1 proteins in the striatum obtained from 6-OHDA lesioned animals treated with or without ANR1-treated and from those control animals: saline-treated, SNR1-treated or contralateral sham operated of rat.

Table 5.2 Semi-quantitative analysis of the relative intensity of NR1 receptor subunits protein expression after different treatments applied in the 6-OHDA lesioned rat striatum.

Figure 5.5 Immunofluorescent micrographs of the rat striatum immunostained reveal immunoreactivity for NR1.

Figure 5.6 Immunofluorescent micrographs of the rat striatum immunostained reveal immunoreactivity for NR1 at cellular levels.

Table 5.3 Relative intensity of NR1 receptor subunits immunofluorescence after different treatments applied in the 6-OHDA lesioned rat striatum.

Chapter 6 Changes in level of Zinc and expression of Metallothionein-I in the 6-OHDA lesioned rats substantia nigra

6.1 Introduction

6.1.1 Objectives

6.2 Materials and Methods

6.2.1 Animals

6.2.2 Unilateral six-hydroxydopamine-lesioned
6.2.3 Behavioral Screening

6.2.4 Immunohistochemistry and histofluorescence

6.2.4.1 Tissue preparation

6.2.4.2 Double immunofluorescence

6.2.4.3 N-(6-Methoxy-8-quinolyl)-p-Toluene-Sulfonamide Histofluorescence

6.2.5 Preparation for fluorescent microscopy and laser scan confocal microscopy

6.3 Results

6.3.1 Distribution of GFAP and MT-I in the substantia nigra pars compacta

6.3.2 Detection of Zn in the 6-OHDA lesioned rats using specific Zn-fluorescence indicator TSQ.

6.4 Discussion

6.5 Conclusion

Figure 6.1 Color fluorescent micrographs of the 6-OHDA lesioned rat substantia nigra double immunostained to reveal immunoreactivity for MT-I together with immunoreactivity for GFAP.

Figure 6.2 Color fluorescent micrographs of the 6-OHDA lesioned rat substantia nigra double immunostained to reveal immunoreactivity for MT-I together with immunoreactivity for GFAP.

Figure 6.3 Color fluorescent micrographs of TSQ staining in the 6-OHDA lesioned rats substantia nigra.

Chapter 7 Prevention and therapeutically studies of Parkinson’s disease using 6-OHDA lesioned rats: A summary

7.1 Changes of glutamate receptors in the 6-OHDA-lesioned models and the implications in clinical applications

7.2 Therapeutically studies of Parkinson’s disease

7.3 Neuroprotection in Parkinson’s disease

7.4 Suggestions for future studies
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Lists</td>
<td>142</td>
</tr>
<tr>
<td>Appendix I</td>
<td>157</td>
</tr>
<tr>
<td>Appendix II</td>
<td>158</td>
</tr>
<tr>
<td>Appendix III</td>
<td>159</td>
</tr>
<tr>
<td>Appendix IV</td>
<td>160</td>
</tr>
<tr>
<td>Curriculum Vitae</td>
<td>165</td>
</tr>
<tr>
<td>List of Publications</td>
<td>166</td>
</tr>
</tbody>
</table>