Phase Transitions in Solid C_{60} Doped with C_{70}:
A Study with Dielectric Spectroscopy

KEUNG Suet Kwan

A thesis submitted in partial fulfillment of the requirements
for the degree of
Master of Philosophy

June 2001

Hong Kong Baptist University
ABSTRACT

An experimental study has been carried out into the phase transitions of C₆₀ crystal grown by a diluted solution method, which allows their doping by C₇₀. The adopted doping levels were 0, 1, 2, 3 and 10%. The phase transitions were identified from thermal analysis and dielectric spectroscopy. C₇₀ was found to depress the orientational order to disorder transition temperature T_c of 260 K in pristine C₆₀, as indicated by the endothermic peak in heat-flux Differential Scanning Calorimetry thermogram, as well as by the minimum in the temperature-dependent permittivity ε' in dielectric spectrum. In addition, features were discerned near 90 K, which we attribute to glass transition, although on the same time scale this phase change occurs at much higher temperature as observed previously by other investigators. Significantly, the activation energy for this second-order phase change, calculated from the frequency dependent of impedance spectra, was greatly reduced at the same time. All these effects of doping with C₇₀ are explained by its production of stacking faults, which has been confirmed by powder X-ray diffractometry.
TABLE OF CONTENTS

Declaration .. 1
Abstract ... ii
Acknowledgements ... iii
Table of Contents ... iv
List of Tables ... vi
List of Figures .. vii

Chapter 1. Introduction .. 1
1.1 Structures of Molecular C_{60} & C_{70} .. 1
1.1.1 C_{60} .. 1
1.1.2 C_{70} .. 3
1.2 Structure of C_{60} & C_{70} Solids .. 4
1.2.1 Crystalline C_{60} ... 4
1.2.1.1 Low-and High-Temperature Phases ... 5
1.2.1.2 First-Order Phase Transition .. 6
1.2.1.3 Glass Transition ... 8
1.2.2 Crystalline C_{70} ... 13
1.3 Dielectric Properties of C_{60} .. 14
1.4 Purpose of This Work ... 16
1.5 Organization of This Thesis .. 17

Chapter 2 Dielectric Properties of Solids ... 19
2.1 Fundamentals of Dielectric Physics .. 19
2.2 Atomistic Mechanisms of Polarization ... 23

Chapter 3 Principles of Measurement Methods ... 27
3.1 Dielectric Spectroscopy .. 27
3.2 Differential Scanning Calorimetry .. 34
3.3 Powder X-Ray Diffraction ... 39
3.3.1 Bragg’s Law .. 40

Chapter 4 Experimental Aspects ... 46
4.1 Samples Preparation ... 46
4.2 X-ray Diffractometry Characterizations ... 47
4.3 Procedures for Thermal Analysis ... 48
4.4 Procedures for Dielectric Spectroscopic Measurement 50