Chiral β-Amino Sulfoxides and Chiral Sultams

in Asymmetric Synthesis

LIN Jing

A thesis submitted in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

February 2000

Hong Kong Baptist University
Abstract

In an attempt to develop new chiral catalysts in the asymmetric addition of diethylzinc with benzaldehyde, a series of \(\beta \)-aminosulfoxides possessing isoquinoline and \(\beta \)-carboline skeletons have been synthesized and characterized. Experimental results revealed that these ligands only demonstrated a marginal catalytic property for the addition reaction, indicating that ligands possessing a sulfinyl group and a basic nitrogen in a cyclic secondary or tertiary amine form are not efficient in catalyzing this addition reaction in an enantioselective manner.

The use of the rational chemically designed norbornenesultam, \((-)-(1S, 2R, 6R, 7R)-3,4\)-thiazatricyclo \([5.2.1.0^{2,6}]\) deca-8-ene-3,3-dioxide, and its antipode as highly practical chiral auxiliaries for asymmetric alkylation and aldol reactions have been developed.

Norbornenesultam can be synthesized from allyl bromide through a five-step reaction sequence with 34% overall yield. Due to the high crystallizability of the auxiliary moiety, most of the products of alkylation and aldolization are frequently crystalline and are easily enriched to high enantiomeric purity upon recrystallization.

The chiral auxiliaries undergo efficient and highly diastereoselective alkylation reactions with a wide range of halides including less reactive substrates such as \(n \)-alkyl halides. Diastereoselectivities of up to 94% de can be routinely achieved. It is particularly noteworthy that \(N \)-acylnorbornenesultam can react with racemic ethyl \(\alpha \)-bromopropanoate, \(\alpha \)-bromobutanonate, and \(\alpha \)-bromohexanoate in a highly stereoselective manner. Among the four possible products, only one diastereoisomer was isolated. Under the experimental conditions, not only was the absolute configuration of the \(\alpha \)-carbon of the acyl group completely controlled, but also the stereochemical control was further
extended to the β-carbon. The absolute configurations generated in the alkylation were unambiguously established by X-ray studies.

Further transformations of the products of the asymmetric alkylation reaction were also investigated. Non-destructive cleavage reactions of the alkylated products provided direct access to highly enantiomerically enriched carboxylic acids, esters and alcohols. In addition, using the alkylated products as starting materials, a new methodology for an efficient synthesis of a variety of chiral 1,3-di-, and 1,3,4-trisubstituted pyrrolidines was developed. The synthesis of two naturally occurring 1,3-disubstituted pyrrolidines was achieved via the newly developed route for the first time.

TiCl$_4$ promoted the aldol condensations of the derived N-acylated norbornenesultam with aromatic and aliphatic aldehydes afforded anti aldol products with high diastereoselectivities. The effects of the structure of the chiral auxiliaries and aldehydes were also examined.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Schemes</td>
<td>viii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xiii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 Background .. 1

1.2 Asymmetric Synthesis 4

1.3 The Use of Chiral Catalysts in Enantioselective Addition of Organozinc to Aldehydes 9

1.4 The Use of Chiral Auxiliaries in Asymmetric Synthesis ... 12

1.5 References ... 15

Chapter 2 Synthesis of Chiral β-Aminosulfoxides and Their Use as Catalysts in Asymmetric Synthesis

2.1 Background ... 21

2.2 Synthesis of Chiral β-Aminosulfoxides Possessing Isoquinoline and β-Carboline Skeleton ... 23
2.3 Chiral \(\beta \)-Aminosulfoxide as Catalysts in the Addition of Diethylzinc to Benzaldehyde

2.4 Experimental

2.5 References

Chapter 3 Asymmetric Alkylation Reactions Using New Chiral Sultams as Auxiliaries

3.1 Background

3.2 Synthesis of Chiral Norbornenesultams

3.3 \(N \)-Acylation of the Norbornenesultams

3.4 The Asymmetric Alkylation Reactions of \(N \)-Acynorbornenesultams

3.5 The Chiral Induction of Structurally Different Auxiliaries

3.6 Identification of Diastereoisomers and Determination of Diastereomeric Ratios

3.7 Transition State and Reaction Stereoselectivities

3.8 Conclusion

3.9 Experimental

3.10 References

Chapter 4 Further Transformation of Alkylated Chiral Sultams and Their Application in the Synthesis of Substituted Pyrrolidines

4.1 Background

4.2 Transformation into Chiral Acids and Esters

4.3 Preparation of Chiral 1,4-Diols and the Corresponding Ditosylates

4.4 Synthesis of 1,3-di, 1,3,4-trisubstituted Chiral Pyrrolidines