Some Optimalities of Uniform Designs and
Projection Uniform Designs under Multi-Factor Models

XIE Min-Yu

A thesis submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

May 1998
Hong Kong Baptist University
Preface

In today’s technical and industrial applications, one may face a system with high dimensional input and nonlinear relationship (response) between input and output. Usually, we want to model the complex response by a fitting model based on input values and output ones. Of course, the quality of the fit depends on choices (design) of input values. Due to the complexity of the system, a “space filling” design is needed (e.g., see Fang and Hickernell, 1995, and Bate, Buck, Riccomagno and Wynn, 1996). In the literature some such designs have been proposed. Following are two frequently used designs:

- the uniform design;
- the Latin hypercube sample.

The former supplies global uniform points over the experimental domain in the sense of some model-independent measure of uniformity. While the latter and its versions provide projective uniform sample points in the sense that these points stratify low dimensional margins simultaneously.

The uniform design and the Latin hypercube sample have advantages in computer experiments and their uniformities play important roles in getting these optimalities. Motivated by these facts, this thesis investigates the usefulness of uniformity in experimental designs. The research mainly concentrates on the two kinds of uniformities mentioned above:

- global uniformity;
- projective uniformity.

The measures of usefulness are taken as:

- the criteria in decision theory for approximately linear models and nonparametric models;
- the criteria in optimum design theory for Fourier models and wavelet models.

Since the uniform design is a kind of discrete approximation to the uniform design measure (uniform distribution) over the experimental domain and the most
tables of the uniform designs (see Fang, 1994) are generated by the good lattice
designs, the thesis deals with optimalities of the uniform design measure and the
lattice design. Based on the projective uniformity of the Latin hypercube sample
and its versions, the projective uniform design is introduced and its optimalities in
experimental designs are studied. The whole thesis is organized as follows:

Chapter 1 gives backgrounds and concepts of the uniform design and the Latin
hypercube sample, and introduces optimalities of them in computer experiments,
which are the motivations of the thesis. Finally, a summary of the thesis is given.

Chapter 2 is to make necessary preparations for later use. Some contents related
to optimal design theory, product model and wavelet theory are provided.

Chapter 3 researches optimalities of the uniform design measure for a nonpara-
metric model. Under a framework of decision theory, we prove that the uniform
design measure is an admissible minimax design and the best design among a reason-
able design class. These optimalities and robustness of the uniform design measure
obtained by Wiens (1991) for an approximately linear model also show optimalities
of the uniform design in experimental designs. This is because the uniform design
is a kind of discrete approximation to the uniform design measure.

Chapter 4 studies optimalities of the lattice design for interaction Fourier mod-
els. Riccomagno, Schwabe and Wynn (1995) obtained D-optimal lattice designs for
certain interaction Fourier models. We extend their results to general interaction
Fourier models. These optimalities of the lattice design show at least in part those
of the uniform design as most tables of the uniform designs are generated by the
good lattice designs.

Chapter 5 extends the results of D-optimal designs obtained by Herzberg and
Traves (1994) for Haar wavelet models to interactive Haar type wavelet models. We
prove that a design is D-optimal if and only if it is projective uniform. This result
also shows that the sufficient condition obtained by Herzberg and Traves (1994) is
also necessary.

Min-Yu Xie
Department of Mathematics
Hong Kong Baptist University
Hong Kong

May, 1998
Table of Contents

Dedication ... i
Declaration ... ii
Preface ... iii
Acknowledgements ... v
Table of Contents ... vi
List of Tables ... ix
List of Figures .. x

1. Introduction .. 1
 1.1 The Challenge of System ... 1
 1.2 Designs for Large Systems .. 7
 1.2a The Uniform Design .. 7
 1.2b A Practical Example of Uniform Design 9
 1.2c The Latin Hypercube Sample 12
 1.3 Optimalities of UD and LHS in Computer Experiments 14
 1.3a Optimalities of the Latin Hypercube Sample 15
 1.3b Optimalities of the Uniform Design 16
 1.4 Summary of the Thesis .. 17
 1.4a Optimality of the Uniform Design Measure 18
 1.4b Optimality of the Lattice-Based Design 19
 1.4c Optimality of the Projective Uniform Design 19
2. Some Preparations .. 21
 2.1 Optimum Design Theory ... 21
 2.1a The Linear Model ... 21
 2.1b Generalized Designs ... 22
 2.1c Optimal Criteria .. 25
 2.1d Equivalence Theorems 30
 2.2 Product Model ... 32
 2.2a Product Interaction .. 32
 2.2b Product Design .. 33
 2.3 Wavelet Theory .. 35
 2.3a Concepts of Wavelets 36
 2.3b Multiresolution Analysis 41
 2.3c Spline-Wavelets ... 46

3. Optimality of the Uniform Design Measure 49
 3.1 Robustness of UDM under an Approximately Linear Model .. 49
 3.2 Criteria of Optimal Designs for a Nonparametric Model 52
 3.2a A Frame of the Decision Theory 53
 3.2b Compare the Frame with that for an Approximately Linear Model 57
 3.3 Optimality of UDM under a Nonparametric Model 58
 3.3a Preparatory Work ... 58
 3.3b Admissible Minimaxity of UDM ... 60
 3.3c Optimalities of UDM among a Reasonable Design Subspace 64
 3.4 Some Discussions ... 67

4. Optimality of the Lattice-Based Design 70
 4.1 Optimality of LBD under a Complete Interaction Fourier Model 70
 4.2 Optimality of LBD under a General Interaction Fourier Model 75
 4.2a A Class of Interaction Fourier Models 76
 4.2b Orthogonality .. 80
 4.2c D-Optimality .. 83

5. Optimality of the Projective Uniform Design 85
 5.1 D-Optimal Designs for Haar Wavelet Models 85
 5.2 D-Optimal Designs for b-adic Haar Wavelet Models 89
 5.2a D-Optimal Designs for Univariate Models 91