Synthesis of Carbon-Free Bi2223 Superconductor of High Phase Purity

LI Chao Rui

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

February 1998

Hong Kong Baptist University
ABSTRACT

Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10+\delta}$ (Bi2223) is a high-\(T_c\) superconducting ceramic and this work is devoted to the synthesis of its high purity phase. In the past decade, although Tl- and Hg-based systems with higher \(T_c\) have been synthesised, their chemical toxicities limit their application potentials, hence Bi2223 remains one of the most promising materials, despite problems with attaining its pure phase, which is due to the uncertainty in its formation mechanism and the effect of residual carbon impurities. In this work, a four-step process has been developed, in which carbon-free intermediate compounds are fabricated by solid-state reaction. A series of thermoanalytical measurements had been performed on a large group of powder samples, with different combinations and proportion of the source chemicals Bi$_2$O$_3$, SrCO$_3$, CaCO$_3$ and CuO. Decomposition of Sr carbonate is activated in the mixture with precursor-A Bi$_2$CuO$_4$ from Bi$_2$O$_3$ and CuO. Two types of Bi$_2$CuO$_4$, with similar phase structure, are produced, and their respective effects on SrCO$_3$ have been identified. Then precursor-B, containing predominant Bi2201 and minor Bi$_2$Sr$_2$O$_5$, is formed. Precursor-C, a mixture of Ca$_2$CuO$_3$ and CuO, comes from the chemical reaction between CaCO$_3$ and CuO. All products and intermediates have successfully been identified with powder XRD.

For the exactly analysis of the kinetics of solid-state reaction, a new method has been developed. Its validity is experimentally confirmed.

Bi(Pb)2223 superconducting materials are synthesised using carbon-free precursors-B and -C as source chemicals. Based on TA and XRD data, an optimum procedure is formulated. In our precursor route, Bi$_2$Sr$_2$O$_5$ plays an important role in progressing toward highly pure Bi2223. The superconductivity and phase purity of processed materials are carried out. Although it is difficult to achieve pure Bi2223 in the nominal composition Bi$_{2.6}$Sr$_{2.0}$Ca$_{2.0}$Cu$_{3.0}$O$_{10+\delta}$, kinetics analysis suggests diffusion-controlled growth in Bi$_{1.84}$Pb$_{0.14}$Sr$_{1.84}$Ca$_{2.12}$Cu$_{3.04}$O$_{10+\delta}$ and Bi$_{2.0}$Sr$_{1.84}$Ca$_{2.12}$Cu$_{3.04}$O$_{10+\delta}$, which two compositions can be synthesised as carbon-free and phase-pure.
CONTENTS

DECLARATION i
ABSTRACT ii
ACKNOWLEDGMENTS iii
CONTENTS iv
LIST OF TABLES viii
LIST OF FIGURES ix

Chapter 1 Introduction 1
1.1 Purpose of the Research Project 1
1.2 Brief Historical Perspectives 2
1.2.1 Superconducting Characteristic Properties 2
1.2.1.1 Zero resistance: \(\rho = 0 \) for \(T < T_c \) 4
1.2.1.2 Perfect diamagnetism: \(B = 0 \) inside the superconductor 6
1.2.2 Type-I and Type-II Superconductors 9
1.2.3 Superconducting Materials 14
1.3 Overview on Formation of Bi2223 Phase 17
1.3.1 Growth Conditions 17
1.3.1.1 Starting composition 17
1.3.1.2 Calcination atmosphere 17
1.3.1.3 Calcination temperature 18
1.3.1.4 Calcination time 18
1.3.2 Mechanisms 19
1.3.2.1 Disproportionation 20
1.3.2.2 Diffusion and cation insertion (from liquid) 21
1.3.2.3 Dissolution-precipitation (Peritectic-like reaction) 22
1.3.2.4 Liquid-aided sintering (Ca3PbO5-catalyzed reaction mechanism) 24
1.3.2.5 Roles of Pb 25
1.3.3 Kinetics 26
1.3.4 Key Elements 28
Chapter 2 Procedures of Materials Fabrication

2.1 Solid-State Reaction
 2.1.1 Calcination
 2.1.2 Modification of a Muffle Furnace
 2.1.3 Sintering
 2.1.4 Control of Atmosphere

2.2 Precursor Routes

Chapter 3 Characterisation of Processed Materials

3.1 Thermal Analysis
3.2 X-ray Diffraction
 3.2.1 X-ray Diffraction Data Acquisition
 3.2.2 X-ray Diffraction Data Analysis
 2.2.3 Kinetic Study Using X-ray Diffraction

3.3 Identification of Superconductivity
 3.3.1 Four-Point Probe Technique
 3.3.2 Magnetic Susceptibility
 3.3.3 Cryogenic System
 3.3.4 Data Acquisition

Chapter 4 A New Method for Analysing TA Data from Solid-State Reaction

4.1 Introduction
4.2 Theory
4.3 Applications
 4.3.1 Strontium Carbonate Data
 4.3.2 Calcium Carbonate Data
 4.3.3 Copper Oxide Data
 4.3.4 Data from ICTAC for Kinetics Analysis Project

4.4 Conclusions
Chapter 5 Carbon-Free Precursors for Bi(Pb)2223

5.1 Introduction

5.2 Experimental Details

5.3 Results and Discussion

5.3.1 Thermal Analysis on Quaternary Mixture

5.3.2 Decomposition of CaCO₃ in Powder Mixtures

5.3.2.1 CaCO₃ + CuO binary powder mixture

5.3.2.2 CaCO₃ + Bi₂O₃ binary powder mixture

5.3.2.3 CaCO₃ + SrCO₃ binary powder mixture

5.3.2.4 2CaCO₃ + Bi₂O₃ + CuO ternary powder mixture

5.3.3 Decomposition of SrCO₃ in Powder Mixtures

5.3.3.1 SrCO₃ + CuO binary powder mixture

5.3.3.2 SrCO₃ + Bi₂O₃ binary powder mixture

5.3.3.3 SrCO₃ + CaCO₃ binary powder mixture

5.3.3.4 2SrCO₃ + Bi₂O₃ + CuO ternary powder mixture

5.3.4 Synthesis of Precursor-A Bi₂CuO₄ and Uncertainty of (Bi, Pb)₂CuO₄

5.3.4.1 Bi₂O₃ + CuO binary powder mixture

5.3.4.2 Uncertainty of (Bi, Pb)₂CuO₄

5.3.5 Carbon-Free Precursor-B

5.3.5.1 2SrCO₃ + Bi₂CuO₄ (black) powder mixture

5.3.5.2 2SrCO₃ mixed with Bi₂CuO₄ (gray) or (Bi, Pb)₂CuO₄

5.3.5.3 SrCO₃ mixed in Bi₂CuO₄ (black)

with various mass ratio

5.3.5.4 SrCO₃ mixed with Bi₂O₃

5.3.6 Carbon-Free Precursor-C

Chapter 6 Synthesis of Bi(Pb)2223 of High Phase Purity

6.1 Introduction

6.2 Experimental Procedures

6.3 Results and Discussion

6.3.1 Synthesis of Bi(Pb)2223 Phase