Toxicokinetics of Pentachlorophenol, 2,3,4,6-Tetrachlorophenol and 2,4,6-Trichlorophenol in the Golden Apple Snail
(Pomacea lineata Wagner)

CHAN Tsz Chung

A thesis submitted in partial fulfillment of the requirement for the degree of Master of Philosophy

November 1994

Hong Kong Baptist University
Abstract

The uptake and depuration of three chlorophenols: pentachlorophenol (PCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TTCP) and 2,4,6-trichlorophenol (2,4,6-TCP) were studied in a freshwater snail, the golden apple snail (Pomacea lineata Wagner). The snails were exposed to continuously flowing chlorophenol solution until the apparent steady state was reached, the body burdens were found to be 25.79 µg/g, 6.59 µg/g and 10.69 µg/g for PCP, 2,3,4,6-TTCP and 2,4,6-TCP respectively, and with the corresponding bioconcentration factors (BCFs) of 5157.7, 1317.4 and 2138.7. The BCF of PCP was significantly greater than the BCFs of 2,3,4,6-TTCP and 2,4,6-TCP (α = 0.05).

During the depuration phase, the snails were exposed to clean water until the body burden dropped below to 10 % to that at the apparent steady state. Chlorophenols were eliminated rapidly from the snails, and among which 2,4,6-TCP was the most rapidly eliminated chlorophenol, with the elimination rate constant (k_{el}) of 0.1078 h^{-1} and the biological half-life (T_{1/2}) of 6.4 h, followed by PCP (k_{el}: 0.0622 h^{-1}, T_{1/2}: 11.1 h) and 2,3,4,6-TTCP was the most slowly eliminated chlorophenol (k_{el}: 0.553 h^{-1}, T_{1/2}: 12.5 h). Depuration of chlorophenols in the golden apple snails followed a single compartment, first order kinetic manner, linear regression models were successfully constructed to describe the correlation between the body burden of chlorophenols and time.

In the present study, it was also found that the BCF, k_{el} and T_{1/2} measured in the golden apple snail were comparable to those obtained from fish and mussel, the similarity in bioaccumulation potential between these animals make the golden apple snail even much preferable to be a biological indicator because of its limited mobility and easy collection.
TABLE OF CONTENTS

Abstract i
Acknowledgment ii
List of Abbreviations iii
List of tables iv
List of figures vii

Chapter 1 Introduction 1

1.1 Chlorophenols: its environmental importance 1
 1.1.1 Introduction 1
 1.1.2 Worldwide production of chlorophenols 1
 1.1.3 Usage of chlorophenols and the related pollution problems 3
 1.1.4 Chlorophenols pollution in the environment and their environmental fate 6
 1.1.5 Toxicity of chlorophenols 9
 1.1.6 Metabolism of chlorophenols 15

1.2 Bioconcentration of organic pollutants in the aquatic organisms 17
 1.2.1 Introduction 17
 1.2.2 Correlation between bioconcentration factor and octanol/water partition coefficient 17
 1.2.3 Effect of molecular weight on bioconcentration of hydrophobic organic compounds 20
 1.2.4 Steric effect of hydrophobic molecules on bioconcentration 21
 1.2.5 Effect of solubility on bioconcentration 21
 1.2.6 Use of n-octanol as surrogate for lipid 22
 1.2.7 Effect of biotransformation on bioconcentration 23
 1.2.8 Creditability of the experimental data for bioconcentration 24
 1.2.9 Uptake of organic chemicals via the food 25
 1.2.10 Conclusion 27
1.3 Principles of Toxicokinetics
 1.3.1 Introduction 30
 1.3.2 Uptake and elimination 30
 1.3.3 The concept of compartment 31
 1.3.4 Biological half-life 33
 1.3.5 Clearance and area under the curve 34

1.4 The Golden Apple Snail (*Pomacea lineata* Wagner)
 1.4.1 Introduction 35
 1.4.2 Classification 35
 1.4.3 External and internal features 36
 1.4.4 Feeding habit 37
 1.4.5 Respiration 37
 1.4.6 Reproduction 37
 1.4.7 Behaviour and distribution 37
 1.4.8 Economic importance 38

1.5 Objectives of the study 42

Chapter 2 Materials and Methods 44

2.1 Continuous flow system
 2.1.1 Introduction 44
 2.1.2 Material and description of the system 45
 2.1.3 Operation of the system 47
 2.1.4 Evaluation of performance of the system 47

2.2 Method of determining chlorophenols in the snail's soft tissue
 2.2.1 Introduction 58
 2.2.2 Reagents 58
 2.2.3 Sample collection and preparation 59
 2.2.4 Extraction 60
 2.2.5 Cleanup 60
 2.2.6 Derivatization 61
 2.2.7 Gas chromatography analysis 61

2.3 Method of extracting chlorophenols in water
 2.3.1 Chemicals and apparatus 63
 2.3.2 Extraction procedures 63
2.4 Results
2.4.1 Analytical method of determining chlorophenols in the snail's soft tissue 65
2.4.2 Results of the method of extracting chlorophenols in water 66
2.4.3 Instrumentation 66
2.4.4 Confirmation of the chlorophenol acetate standards 67

2.5 Discussion on analytical methods 69
2.5.1 Discussion on the method of determining chlorophenols in the snail's soft tissue 69
2.5.2 Discussion on the method of extracting chlorophenols in water 70
2.5.3 Discussion on the derivatization of chlorophenols 71
2.5.4 Discussion on instrumentation 73

2.6 Conclusion 75

Chapter 3 Bioconcentration Assay of Chlorophenols in the Golden Apple Snails 76

3.1 Introduction 76

3.2 Method of bioconcentration assay 77
3.2.1 Source of test organism 77
3.2.2 Preliminary test for estimating the length of uptake phase 77
3.2.3 Uptake phase 78
3.2.4 Depuration phase 78
3.2.5 Control 79
3.2.6 Dilution water 79
3.2.7 Statistical analysis 80

3.3 Results 82
3.3.1 Result of the pentachlorophenol bioconcentration assay 82
3.3.2 Result of the 2,3,4,6-tetrachlorophenol bioconcentration assay 95
3.3.3 Result of the 2,4,6-trichlorophenol bioconcentration assay 102
3.4 Discussion on the method of bioconcentration assay
 3.4.1 Modification of the standard method
 3.4.2 Distribution of sampling points
 3.4.3 Number of sampling points and number of samples
 3.4.4 Temperature and photoperiod
 3.4.5 Loading
 3.4.6 Toxicant level
 3.4.7 Test animal: source, size and sex
 3.4.8 Care and handling

3.5 Discussion on the comparative Toxicokinetics of pentachlorophenol, 2,3,4,6-tetrachlorophenol and 2,4,6-trichlorophenol in the golden apple snails
 3.5.1 Apparent steady state concentration
 3.5.2 Bioconcentration factor
 3.5.3 Uptake rate constant
 3.5.4 Depuration profiles of chlorophenols
 3.5.5 Elimination rate constant
 3.5.6 Biological half-life
 3.5.7 Bioavailability
 3.5.8 Total body clearance
 3.5.9 Toxicokinetics of chlorophenols: its implication to the ecotoxicology of chlorophenols to the aquatic organisms

3.6 Conclusion

Chapter 4 The Feasibility of Using the Golden Apple Snail as a Bioindicator Organism
 4.1 Introduction
 4.2 Mobility test of the golden apple snail
 4.2.1 Method
 4.2.2 Results
4.3 Discussion
4.3.1 Bioaccumulation potential of the golden apple snail
4.3.2 The characteristics of the golden apple snail for being used as a bioindicator organism
4.3.3 Distribution and easy of identification and collection
4.3.4 Economic importance
4.3.5 Easy of culturing
4.3.6 Limited mobility
4.3.7 Life span and size

4.4 Conclusion

Chapter 5 General Conclusions

References

Appendix

Vita