SPATIAL AND TEMPORAL PROBING OF PARTICLE DENSITY
IN
UV LASER GENERATED PLASMA
AND
HIGH PRESSURE TE DISCHARGE PLASMA

NG Lun Chiu

A thesis submitted on partial fulfillment of the requirements
for the degree of
Master of Philosophy

January, 1994

Hong Kong Baptist College
ABSTRACT

Since the refractive index of plasma is very sensitive to the density of free electrons, a specially designed Michelson interferometer is established to probe the transient plasmas, generated by pulsed laser and by pulsed gas discharge, respectively. With a moving mirror in the interferometer and a phase comparator control system, the phase angle of the sinusoidal signal was tracked and the plasma was initiated whenever the detected phase angle matched a pre-defined value. The transient interference waveform produced as a consequence of the plasma formation was then synchronously captured. This modified set-up features minimal vibration isolation, fast response, powerful noise rejection, and a detection limit of a thousandth of a fringe shift.

Temporally and spatially resolved interference observations were performed for the LGP (laser generated plasma) from a solid sample by the ablation of a short uv laser pulse (15 ns, 308 nm) in vacuum and in gas environments. The sample materials are pure metal (copper), alloy (brass) and metallic oxide (Al₂O₃), respectively. The velocity distribution of electrons, probable expansion velocity of its stream, and threshold of electrons ejection could all be determined with these interference measurements. The characteristics of the LGP are proven to be dependent upon the sample material as well as the pressure and the compositions of the atmosphere surrounding it. The shock wave and caging effect could be determined from the variation of the interference signal waveform as well. An example is the study of the LGP in an argon atmosphere. The angular distribution of the electron density is found to be isotropic.

Interference measurements were also performed on the HPTE (high pressure, transversely excited gas discharge) plasma occurring in a nitrogen laser chamber. It was found that the laser output energy was approximately proportional to the electron density of the discharge plasma, and the laser action starts with the rise of electron density.
TABLE OF CONTENT

ABSTRACT ... i
ACKNOWLEDGMENT ... ii
DECLARATION .. iii
TABLE OF CONTENT ... iv
LIST OF FIGURES ... vii
LIST OF TABLES ... x

CHAPTER 1: INTRODUCTION ... 1
1.1 Significance of the LGP ... 1
1.2 Significance of the HPTE Discharge Plasma 6
1.3 Significance of the Electron Density Measurement 8

CHAPTER 2: DIAGNOSTICS OF LGP AND HPTE PLASMAS 15
2.1 Diagnostic of a LGP ... 15
 2.1.1 Photographic Imaging ... 15
 2.1.2 Spectroscopic Methods .. 20
 A. Emission Spectroscopy .. 20
 B. Absorption Spectroscopy ... 22
 C. Laser-Induced Fluorescence (LIF) 22
 2.1.3 Laser Beam Probing Methods .. 23
 A. Beam Deflection .. 24
 B. Interferometry ... 27
2.2 Diagnostic of a HPTE Plasma ... 29
2.3 Michelson Interferometry ... 31

CHAPTER 3: INSTRUMENTATION ... 34
3.1 Introduction to Problems .. 34
3.2 Phase Comparator Control System ... 37
 3.2.1 Principles .. 37
 3.2.2 Applications ... 40
3.3 Design and Construction .. 42
 3.3.1 D.C. Motor-Driven Micrometer Lever Assembly 42
 3.3.2 Electronic Circuitry of Phase Comparator Control System 43
CHAPTER 4: STUDY OF PARTICLE DENSITY OF THE LGP 48
4.1 Experimental Set-up .. 48
 4.1.1 Overview ... 48
 4.1.2 The production of the LGP ... 50
 4.1.3 The Sample Chamber ... 51
 4.1.4 The Moving-Mirror Michelson Interferometer 52
 4.1.5 The Method of Capturing Raw Data 54
4.2 Raw Data Treatment ... 55
 4.2.1 The Identification of Signal Portion 55
 4.2.2 The Transformation to Fringe Shift 58
 4.2.3 The Reliability of the Temporal Resolution 58
 4.2.4 The Time Origin ... 60
4.3 Experimental Results ... 61
 4.3.1 The Dependence of Laser Fluence in Vacuum 61
 4.3.2 The Dependence of Probe Distance in Vacuum 68
 4.3.3 The Dependence of Laser Fluence in Ambient Gas 74
 4.3.4 The Dependence of Probing Distance in Ambient Gas 79
 4.3.5 The Effect of Different Ambient Gases 83
 4.3.6 The Transverse Scan ... 88
4.4 Discussions .. 92
 4.4.1 The Measurement of the Ignition Threshold 93
 4.4.2 The Time-of-Flight (TOF) Measurement 96
 4.4.3 The Caging Effect ... 102
 4.4.4 The Electron Density Function 103

CHAPTER 5: STUDY OF THE HPTE DISCHARGE PLASMA 114
5.1 Experimental Set-up .. 114
5.2 Calibration .. 120
5.3 Experimental Results ... 123
 5.3.1 The Methodology of Signal Subtraction 123
 5.3.2 The Dependence of Charging Voltage 128
 5.3.3 The Dependence of Pressure .. 130
5.4 Discussions .. 132
 5.4.1 The Background Fluorescence 132
 5.4.2 The Interferometer Signals .. 134
 5.4.3 The Temporal Relation between Laser Pulse and Electron Density 136

CHAPTER 6: CONCLUSION AND FURTHER WORK 140
6.1 Conclusion .. 140
6.2 Further work .. 143
6.3 Practical Application .. 144
APPENDICES ... 146
A. The Circuit Diagrams of the Phase Comparator Control System 146
B. The Specifications of the Questek Excimer Laser 150

REFERENCES ... 151

VITA ... 156