Purification of Landfill Leachate by Microalgae

Cheung Kwai Chung

A thesis submitted as partial fulfillment for the degree of Master of Philosophy

December 1991

Hong Kong Baptist College
ABSTRACT

(1) Landfill leachates were collected and their chemical properties analysed bimonthly over a one year period from the Gin Drinkers' Bay (GDB) and Junk Bay (JB) landfills. The JB leachate contained higher average contents of solids, inorganic and organic matter than those of GDB with the exception of heavy metals. Heavy metals were present in the two leachates in trace quantities (<1.0 mg/L). The chemical composition of the two leachates correlated positively (P<0.05) to seasonal effects of dilution by rainfall. Magnesium and pH of the leachates remained relatively constant with respect to sampling time. The contents of solids, inorganic and organic components fluctuated considerably with time. The contents of average ammoniacal nitrogen were 1040 and 549 mg/L while COD were 767 and 695 mg/L for JB and GDB leachates respectively. These results suggest that the leachates needed further treatment before they can be discharged.

(2) Leachates from both landfills were assessed for their acute toxicity using four green algal species, *Chlorella pyrenoidosa*, *C. vulgaris*, *Dunaliella tertiolecta* and *Scenedesmus* sp. Junk Bay leachate was more toxic to the four algal species tested than GDB leachate. Growth of all four species in 50% JB leachate were significantly lower (P<0.05) than those in control. In contrast, the growth of only two species (*Chlorella vulgaris* and *Dunaliella tertiolecta*) in 50% GDB were significantly lower than those in control. Values of 96h-EC50 of JB leachate for all four species were lower than those of GDB. The high contents of ammoniacal-nitrogen and organic compounds (such as volatile fatty acids) seemed to be the factors governing the toxicity of leachate on algae. There were differential sensitivities to leachate exhibited by the tested algal species. Susceptibility to leachates in terms of cell number were in the ascending order of *Chlorella pyrenoidosa*, *Scenedesmus* sp., *C. vulgaris* and *Dunaliella tertiolecta*.

(3) Ammonia stripping followed by the high-lime treatment process was investigated in aerated tanks in the laboratory to compare the effectiveness of ammonia stripping at different flow rates (0, 1 and 5 L/min) as a pretreatment to remove ammoniacal-nitrogen in the leachate, and also to evaluate the effect of lime precipitation (10 mg/L Ca(OH)_2) in removing organic load (COD) and phosphorus. Ammoniacal-nitrogen removal at 20°C with one day retention time was 70% for 0 L/min, 81% for 1 L/min and 90% for 5 L/min regardless of the origin of leachate. The majority of ammonia loss was due to desorption through surface area. The levels of phosphorus and COD were only reduced by lime precipitation process, with 85% and 93% phosphorus removal and 24% and 47% COD removed for JB and GDB leachates respectively. The highly significant difference (P<0.05) of COD removal between JB and GDB might be attributed to the elevated level of high molecular organic matter in GDB leachate.

(4) The efficiency of *Chlorella pyrenoidosa* and *Scenedesmus* sp. in removing
various pollutants containing in landfill leachate after pretreatment by ammonia stripping was tested in the laboratory by batch culture system. The results showed that *Chlorella pyrénoidosa* and *Scenedesmus* sp. had a similar removal efficiency for nutrients such as ammoniacal-nitrogen, oxidized-nitrogen, ortho-phosphorus and COD. The COD removal by algal cultures were better in JB leachate than in GDB leachate (14-21% versus 0.4-7% respectively). The two stabilized leachates were less amenable to biological treatment due to the high content of refractory organic matter. No significant difference (*P > 0.05*) was found in removing other nutrients including ammoniacal-nitrogen, oxidized-nitrogen and ortho-phosphorus between JB and GDB leachate, regardless of the different pretreatment used. The removal efficiency of ammoniacal-nitrogen and phosphorus were found to be higher in air stripped leachate than in free stripped one. Removal of ammoniacal-nitrogen and phosphorus in air stripped leachate were 30% and 87% respectively. Poor removal of ammoniacal-nitrogen was probably due to a deficiency in phosphorus (high N:P ratio) for algal growth in leachate. The two-stage leachate treatment resulted in overall reduction of COD (38-51%), ammoniacal-nitrogen (72-96%) and ortho-phosphorus (79-96%).
TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

CHAPTER 1 INTRODUCTION

1.1 Landfill Leachate Production and Treatment - the Potentials of Microalgae in Leachate Purification 1

1.1.1 Sanitary landfill and leachate production 1

1.1.2 Characteristics of landfill leachate 6

1.1.3 Landfill leachate treatment 8

1.1.4 Potentials and constraints in landfill leachate treatment by microalgae 13

1.2 Aims and Outlines of the Present Study 16

CHAPTER 2 CHEMICAL PROPERTIES OF LANDFILL LEACHATE

2.1 Introduction 19

2.2 Materials and Methods 20

2.2.1 Landfill sites 20

2.2.2 Leachate collection 22

2.2.3 Chemical analysis 28

2.2.4 Statistical analysis 28

2.3 Results and Discussion 29

2.3.1 Characteristics of landfill leachates 29

2.3.2 Seasonal variation 35
CHAPTER 3 THE TOXIC EFFECT OF LANDFILL LEACHATE ON MICROALGAE

3.1 Introduction

3.2 Materials and Methods

- 3.2.1 Algal species tested
- 3.2.2 Leachate collection and analysis
- 3.2.3 Algal toxicity test

3.3 Results and Discussion

- 3.3.1 Chemical characteristics of leachates
- 3.3.2 Effects of leachate on algal growth

3.4 Conclusion

CHAPTER 4 AMMONIA STRIPPING AS PRETREATMENT FOR LANDFILL LEACHATE

4.1 Introduction

4.2 Materials and Methods

- 4.2.1 Leachate collection
- 4.2.2 Ammonia stripping study
- 4.2.3 Chemical analysis
- 4.2.4 Statistical analysis

4.3 Results and Discussion

- 4.3.1 Leachate quality
- 4.3.2 Ammonia stripping performance
4.3.3 Lime precipitation 89

4.4 Conclusion 93

CHAPTER 5 GROWTH AND NUTRIENT REMOVAL EFFICIENCY OF Chlorella pyrenoidosa AND Scenedesmus sp. IN PRETREATED LANDFILL LEACHATE

5.1 Introduction 96

5.2 Materials and Methods 98
 5.2.1 Algal species used 98
 5.2.2 Treatability studies 99
 5.2.3 Analytical measurements 99
 5.2.4 Statistical analysis 99

5.3 Results and Discussion 100
 5.3.1 Pretreatment performance 100
 5.3.2 Algal growth 100
 5.3.3 Changes in pH 103
 5.3.4 Removal of COD 106
 5.3.5 Nitrogen removal 111
 5.3.6 Phosphorus removal 115

5.4 Conclusion 115

CHAPTER 6 GENERAL CONCLUSION 120

APPENDICES: ALGAL GROWTH MEDIA 124

A.1 Bold's Basal Medium 124
A.2 Modified Johnsons Medium 125
A.3 Sporulation Medium 126

REFERENCES 127

VITA 138