Organic semiconducting materials have been attracted considerable attention as a promising technology for the next generation flexible electronic devices, such as solar cells and field-effect transistors because of their advantages of low-cost, structural versatility and flexibility. Many organic semiconducting materials have been developed in recent years.

In this thesis, four \(\pi \)-conjugated building blocks based on benzodithiophene and quinoxalinedithienothiophene were applied to develop novel photovoltaic materials, including donor-acceptor alternating copolymers as a donor material for polymer solar cells, photosensitizers for dye sensitized solar cells, small molecule hole transporting materials for perovskite solar cells and small molecule acceptors for organic solar cells. A comprehensive review of current development of organic photovoltaic materials was presented in Chapter 1.

In Chapter 2, a series of D-A copolymers (PBB-n) based on 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole and 4,5-bis((2-ethylhexyl)oxy)benzo[2,1-b:3,4-b']dithiophene attached with different solubilizing side-chains were designed, synthesised and characterized. In general, PBB-n polymers showed good absorption in the region of visible light and UV region, indicating such polymers are a promising light harvester.
Also, PBB-n exhibited suitable energy levels, suggesting that they could be applied as the donor materials in polymer solar cells. PBB-n also exhibited various extent of aggregation behaviour.

Chapter 3 described syntheses and the fluorination effect of two series of fluoro-substituted PBB-n copolymers, namely PfBB-n and PfBB-n on optical, electrochemical, and optoelectronic properties. Among them, PfBB-n series was characterized with photovoltaic performance. The champion devices fabricated from PfBB-12 showed a PCE as high as 9.7%, with a V_{oc} of 0.92 V, a J_{sc} of 16.60 mA/cm2 and a FF of 63.49%. Cells fabricated from other PfBB-n copolymers also exhibited good PV performance with PCE ranging from 7.4 – 8.5%. For PfBB-n polymers, temperature-dependent aggregation behaviour was exploited by modulating the coating temperature during device fabrication. PSC devices based on PfBB-n exhibited good PV performance with PCE ranging from 7.4% to 9.9%. Among which, PfBB-n provided the most promising PV performance with PCE of 9.9%, a V_{oc} of 0.92 V, a J_{sc} of 16.8 mA/cm2 and a FF of 64.36%.

Electron deficient conjugated structure was seldom used as the π-bridge in metal-free photosensitizers. In Chapter 4, four novel organic photosensitizers, namely QC5-m and PC5-n were designed with an electron deficient π-bridge. Typical sandwich-structured DSSCs based on the newly developed photosensitizers exhibited promising photovoltaic performance with PCE ranging from 5.23 – 7.77 %, with a maximum J_{sc} as high as 15.63 mA cm2. These results suggest that the use of electron deficient π-bridge provides alternative approach to construct efficient organic photosensitizers.

Chapter 5 and Chapter 6 described the design, synthesis and investigation of novel hole-transporting materials and electron acceptor materials based on benzo[2,1-b:3,4-
b'dithiophene-4,5-dione derived building blocks as potential organic photovoltaic materials for solar cell applications.

Keywords: organic photovoltaic materials, photosensitizers, polymer solar cell, electron acceptor, hole-transporting materials.
TABLE OF CONTENTS

DECLARATION ... i

ABSTRACT .. ii

FORMULA INDEX ... vi

DECLARATION ... i

ABSTRACT ... ii

FORMULA INDEX ... v

ACKNOWLEDGEMENTS ... viii

LIST OF SCHEMES .. xv

LIST OF TABLES ... xvi

LIST OF FIGURES .. xix

LIST OF ABBREVIATIONS AND SYMBOLS ... xxv

CHAPTER ONE .. 1

ORGANIC PHOTOVOLTAIC CELLS: INTRODUCTION AND RECENT DEVELOPMENTS ... 1

1.1 INTRODUCTION TO ORGANIC SOLAR CELLS ... 1

1.1.1 General Background ... 1

1.1.2 Working Principle of Organic Solar Cells ... 2

1.1.3 Basic Photovoltaic Concepts ... 3

1.2 INTRODUCTION TO BULK HETEROJUNCTION SOLAR CELLS 6

1.2.1 Introduction .. 6

1.2.2 Operational Mechanism of Bulk Heterojunction Solar Cells 7
1.2.3 Recent Development of Donor Polymer Materials .. 9
Effect of side chain on device performance .. 10
Effect of polymer backbone structures ... 13
Aggregation and crystallization ability ... 15
1.2.4 Recent Developments in SMAs .. 17
1.2.5 Summary and Motivation .. 21
1.3 INTRODUCTION TO DYE-SENSITIZED SOLAR CELLS 22
1.3.1 Introduction .. 22
1.3.2 Operational Mechanism of DSSCs .. 22
1.3.3 Recent Developments in DSSCs ... 23
General design strategy of dyes .. 25
Donor units .. 25
The π-bridges .. 27
Acceptor/anchor group .. 29
1.3.4 Summary and Motivation .. 30
1.4 INTRODUCTION TO PEROVSKITE SOLAR CELLS 31
1.4.1 Introduction .. 31
1.4.2 Operational Mechanism of Perovskite Solar Cells 31
1.4.3 Recent Development of Organic HTMs .. 33
Alternating donor–acceptor structure in HTMs ... 33
Linear/discotic/star-shaped HTMs ... 35
3D/spiro-configured HTMs .. 39
1.4.4 Summary and Motivation .. 42

CHAPTER TWO .. 43
IMPACT OF ALKYL CHAIN LENGTH OF BENZODITHIOPHENE-
BENZOTHIADIAZOLE BASED COPOLYMERS ... 43

2.1 INTRODUCTION ... 43

2.2 RESULTS AND DISCUSSION .. 44

2.2.1 Synthesis ... 44

 Synthesis of Donor Unit .. 44

 Synthesis of Acceptor Units .. 45

 Synthesis of Polymers ... 46

2.2.2 Optical and Electrochemical Properties of PBB-n Polymers 48

2.3 CONCLUSIONS .. 52

2.4 EXPERIMENTAL SECTION ... 53

 2.4.1 General Characterization of Materials .. 53

 2.4.2 Synthetic Procedure ... 54

CHAPTER THREE .. 64

FLUORINATION EFFECT OF BENZODITHIOPHENE-
BENZOTHIADIAZOLE BASED LOW-BAND GAP COPOLYMERS 64

3.1 INTRODUCTION .. 64

3.2 RESULTS AND DISCUSSION .. 66

 3.2.1 Synthesis .. 66

 Synthesis of Donor Unit .. 66

 Synthesis of Acceptor Units .. 66

 Synthesis of Polymers ... 68

 3.2.2 Optical and Electrochemical Properties of PfBB-n Polymers 70

 3.2.3 Device Performance of PfBB-n Polymers ... 74
Chapter 3

3.2.4 Optical and Electrochemical Properties of PffBB-n Polymers

3.2.5 Device Performance of PffBB-n Polymers

3.3 CONCLUSIONS

3.4 EXPERIMENTAL SECTION

3.4.1 General Characterization of Materials

3.4.2 Cell Fabrication

3.4.3 Device Characterization

3.4.4 Synthetic Procedure

Chapter 4

SYNTHESIS AND CHARACTERIZATION OF NOVEL QUINOXALINE AND PHENAZINE BASED ORGANIC DYES FOR DYE SENSITIZED SOLAR CELL APPLICATION

4.1 INTRODUCTION

4.2 RESULTS AND DISCUSSION

4.2.1 Synthesis

4.2.2 Thermal Properties
4.2.3 Optical and Electrochemical Properties .. 113
4.2.4 Device Optimization and Performance ... 120
 Device Optimization .. 120
 Photovoltaic Performance .. 126
 Charge Transfer and Recombination .. 128
4.3 CONCLUSION ... 132
4.4 EXPERIMENTAL SECTION .. 133
 4.4.1 General Characterization of Materials .. 133
 4.4.2 Cell Fabrication .. 134
 4.4.3 Device Characterization ... 134
 4.4.4 Synthetic Procedure ... 135

CHAPTER FIVE .. 155

BENZODITHIOPHENE- AND NAPHTHODITHIOPHENE-BASED HOLE-
TRANSPORTING MATERIALS FOR PEROVSKITE SOLAR CELLS 155

 5.1 INTRODUCTION .. 155
 5.2 RESULTS AND DISCUSSION .. 156
 5.2.1 Synthesis .. 156
 5.2.2 Thermal Properties of HTMs ... 158
 5.2.3 Optical and Electrochemical Properties 159
 5.2.4 Device Performance of HTMs .. 163
 5.3 CONCLUSIONS ... 164
 5.4 EXPERIMENTAL SECTION .. 165
 5.4.1 General Characterization of Materials 165
 5.4.2 Synthetic Procedure ... 166