Abstract

WRKY transcription factors (TFs) belong to a large family of regulatory proteins in plants that modulate many plant processes. Extensive studies have been conducted on WRKY-mediated defense response in Arabidopsis thaliana and many crop species. This study aims to investigate the potential roles and contributions of WRKY TFs regulation in improving defense response in the resynthesized Arabidopsis allotetraploids (Arabidopsis suecica) from two related autotetraploid progenitors, Arabidopsis thaliana (At4) and Arabidopsis arenosa (Aa). Upon infection by Pseudomonas syringae (Pst), the allotetraploids has showed enhanced resistance against the pathogen when compared to the parents. Rapid induction of WRKY18, WRKY40, WRKY38, WRKY53, WRKY6; MAP kinase pathway related genes, WRKY33, PAD3; SA-pathway related genes, ICS1, EDS1, PBS3, MYB31; was evident in response to Pst and salicylic acid treatment in the allotetraploids. Cleaved amplified polymorphic sequences analysis further revealed that the AtWRKY18, AaWRKY40, AtWRKY33, and AtWRKY60 alleles expressed at higher levels when compared to their respective homoeologs in the allotetraploids, suggesting potential altered protein-protein interaction networks in the hybrids. Therefore, a split-luciferase complementation assay was used to characterize and quantify protein-protein interaction among these homoeologous WRKYS in the allotetraploids. Results showed that preferential protein-protein interactions exist for the cis-interacting AtWRKY18/AtWRKY18 homodimer or trans-interacting AtWRKY18/AaWRKY40 heterodimer when compared to the respective
interacting complexes. In addition, differential affinities of WRKY18 and WRKY40 homo- and hetero-dimers toward the W-boxes at the WRKY60 promoter were observed. In the allotetraploids, PRI expression was repressed under basal state when compared to the progenitors. Although PRI is expressed at a higher level in A. thaliana, its expression fold change was higher and faster in the allotetraploids upon salicylic acid treatment. Transient expression of WRKY18 or WRKY40 homodimer in various combinations induced differential expression of PRI gene in their respective wrky18 and wrky40 Arabidopsis thaliana mutants. In contrast, similar PRI induction by homodimer in various combinations was observed when they were transiently expressed in the allotetraploids. In addition, transgenic AtWRKY18 overexpression plant displayed enhanced disease resistance against Pst when compared to AaWRKY18 overexpression lines. Such enhanced disease resistance was found to associate with the higher expression of PRI and PR2 in AtWRKY18 transgenic lines. Moreover, differential Pst-induced expression of the direct targets (ICS1, EDS1 and PBS3) of WRKY18 in the Arabidopsis AtWRKY18 and AaWRKY18 overexpressors supported a biological difference between the At and Aa homodimers in mediating the targets regulation, thus contributing to the difference in disease responses. Overall, our findings suggested that the rapid differential alleles expression and altered protein-protein or protein-DNA interactions of WRKY transcription factors could contribute to the improved defense in the allotetraploids, providing a molecular basis of for heterotic phenotype development in hybrids.
Table of Contents

Declaration ... i
Abstract ... ii
Acknowledgements .. iv
List of Tables .. ix
List of Figures .. x
List of Abbreviations ... xii

Chapter 01 ... 1

Introduction ... 1

1.1 The plant immune system ... 1

1.2 WRKY TFs important regulators of plant processes ... 4

1.2.1 WRKY domain and W-box .. 5

1.2.2 WRKY TFs response to biotic stresses .. 13

1.2.3 WRKY TFs regulate leaf senescence .. 16

1.2.4 Interactions of WRKYs and their partners ... 17

1.2.5 WRKY-MAPK interactions .. 20

1.2.6 Regulations of WRKYs ... 21

1.3 Heterosis .. 23

1.3.1 A molecular model for heterosis ... 26

1.3.2 Non-additive gene expression in allotetraploids .. 27

1.4 Research question and hypothesis .. 28

1.5 Objectives of the present study .. 29

Chapter 2 ... 31

Regulation and expression profiling of WRKY transcription factors in the allotetraploids ... 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Materials and Methods</td>
<td>34</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Plant materials and growth</td>
<td>34</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Pathogen and salicylic acid (SA) treatment</td>
<td>34</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Gene expression analyses</td>
<td>35</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Cleaved Amplified Polymorphic Sequences (CAPS) analysis</td>
<td>36</td>
</tr>
<tr>
<td>2.3</td>
<td>Results</td>
<td>38</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Disease resistance in allotetraploids</td>
<td>38</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Kinetics of Pst- and SA-induced homoeologous WRKY\textsubscript{s} expression in the Arabidopsis allotetraploids</td>
<td>38</td>
</tr>
<tr>
<td>2.3.3</td>
<td>SA-induced pathogenesis-related gene expression in the allotetraploids</td>
<td>49</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Expression of SA pathway-related WRKY\textsubscript{18} and WRKY\textsubscript{40} target genes in the allotetraploids</td>
<td>51</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Interactions between WRKY homologous proteins and DNA bindings</td>
<td>58</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Materials and Methods</td>
<td>60</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Cloning of WRKY homoeologs from Arabidopsis allotetraploids</td>
<td>60</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Cloning of split-LUC constructs and transient expression in Nicotiana benthamiana</td>
<td>61</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Floated-leaf luciferase complementation imaging (FLuCI) assay</td>
<td>62</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Cloning of WRKY homoeologs into bacterial expression vector</td>
<td>63</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Bacterial expression and purification of recombinant Aa/At WRKY18 and WRKY40</td>
<td>66</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Electrophoretic mobility shift assay (EMSA)</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>Results</td>
<td>68</td>
</tr>
</tbody>
</table>
3.3.1 Sequence comparison of WRKY homoeologous .. 68
3.3.2 Homoeologous WRKY interactions in allotetraploids 74
3.3.3 DNA binding affinity of WRKY18 and WRKY40 homo- or heterodimer toward W-boxes .. 78

Chapter 4 ... 87

Biological consequences of homoeologous WRKY18 expression in A. thaliana ... 87

4.1 Introduction .. 87
4.2 Materials and Methods .. 88
 4.2.1 Identification and genotyping of knockout mutants 88
 4.2.2 Transient expression of WRKY homoeologs in Arabidopsis 89
 4.2.3 Construction of pEG100:AtWRKY18p:Myc:AtWRKY18 and pEG100:AtWRKY18p:Myc:AaWRKY18 plasmids 90
 4.2.4 Arabidopsis transformation ... 91
 4.2.5 Genomic DNA extraction .. 92
 4.2.6 Isolation of BASTA-resistant transgenic lines 92
 4.2.7 Segregation analyses of T2 transgenic lines 93
 4.2.8 RT-PCR analyses of transgenic lines for the transgene expression 93
 4.2.9 Western blot analysis for detection Myc-AaWRKY18 and Myc-AtWRKY18 expression ... 94
4.3 Results ... 95
 4.3.1 Differential induction of defense genes by transient WRKY expression ... 95
 4.3.2 Production of transgenic plants expressing WRKY18 homoeologs ... 100
 4.3.3 Disease resistance in transgenic lines overexpressing At or Aa WRKY18 ... 113
4.3.4 Differential induction of Pathogenesis-related genes in transgenic lines overexpressing At or Aa WRKY18 .. 116

4.3.5 Differential induction of SA pathway-related WRKY18 target genes in transgenic lines overexpressing At or Aa WRKY18 .. 119

Chapter 5 .. 124

Discussion, Conclusion and Future perspective .. 124

5.1 Discussion ... 124

5.1.1 A rapid and differential expression of WRKYs and defense-related genes ... 124

5.1.2 Differential protein-protein interaction and protein-DNA interaction 126

5.1.3 Homoeologous WRKY18 expression and their functional divergence in transgenic Arabidopsis ... 127

5.2 Conclusion .. 129

5.3 Future perspective ... 129

List of References ... 134

Curriculum Vitae ... 151