Abstract

Organic donor and acceptor have promised the better future energy technologies to alleviate global energy demand and environmental issues. And nowadays they begin to come true in bulk heterojunction organic solar cells (BHJ OSCs) with advantages of low-cost, light-weight, large-area, flexibility, and with high efficiencies (PCEs) of over 14% for converting solar energy to electricity. Porphyrins are unique potential for artificial photocatalysis but their application in BHJ OSCs are still limited by the PCEs less than 10%. This complicacy comes from their inadequate spectral absorptions and the imperfect morphologies. In this thesis, we devote to chemical modification of acceptor-π-porphyrin-π-acceptor (A-π-Por-π-A) structural molecules to enhance their spectral absorptions and phase-separation functions with fullerene acceptor. Firstly, chemically driving J-aggregates have been studied on the new A-π-Por-π-A porphyrin molecule, which could improve the phase-separation of its blend film with PC71BM and and enhance its performance in BHJ OSCs with PCE up to 8.04%. Secondly, two new benzodithiophene (BDT) π-bridged A-π-Por-π-A molecules have been prepared with complementary absorption between the Soret and Q bands. The devices based on the blend films of the porphyrin donor and PC71BM acceptor exhibit full spectral photocurrent generation and impressive PCEs up to 7.92%. Thirdly, we further extended the π-conjugation of the above BDT π-bridged A-π-Por-π-A molecules by inserting alkyl chain substituted thiophene derivatives into their backbones, resulting in new porphyrin molecules with UV-visible-near-infraed...
absorption spectra. Using those porphyrin molecules as donor and PCBM as acceptor, the devices show full spectra photocurrent generation and appropriate film morphology, resulting in high PCE up to 8.59%.

Besides, photocatalysis is also a new promising technology to generate renewable energy. We herein develop new low-cost and noble-metal-free photocatalysts based on Co(OH)$_2$ modified CdS nanowires and applied them for visible light driven hydrogen production from water-splitting. The optimum H$_2$ production rate reaches 14.43 mmol·h$^{-1}$·g$^{-1}$ under ($\lambda \geq 420$ nm) upon visible light irradiation, which is 206 and 3 times larger than that of the pristine CdS NWs and 1 wt% Pt-CdS NWs, respectively. The results indicate the promising application of earth-abundant Co(OH)$_2$ as alternative cocatalysts of noble metals.
Contents

Declaration ..i

Abstract ..ii

Acknowledgements ...iv

Contents ...vi

List of Schemes ...xi

List of Tables ...xii

List of Figures ...xiv

Abbreviations ...xxv

Chapter 1 Introduction ...1

1.1 Background ..1

1.2 Organic Solar Cells ...2

1.2.1 Structure and Work Mechanism of Organic Solar Cells ...9

1.2.2 Porphyrin for Photovoltaic Application ...15

1.4 Motivation and Aim of Thesis ..26

1.5 References ..36

Chapter 2 Structural Engineering of Donor-Acceptor-Type Porphyrin Small Molecules ...41
2.1 Introduction ... 41

2.2 G1: Donor-Acceptor Type Porphyrin Molecules ... 44
 2.2.1 Results and Discussion .. 45
 2.2.2 OFET performance .. 53

2.3 G2: A-\pi-Por-\pi-A Type Porphyrins Molecules ... 54
 2.3.1 Results and Discussion .. 54

2.4 Conclusion ... 69

2.5 Experimental Part ... 71
 2.5.1. The details for device fabrications, characterization of compounds, can be
 found in Experimental Section in Chapter 7. .. 71
 2.5.2 Synthesis .. 71

2.6 References ... 87

Chapter 3 Nanoaggregates Engineering of A-\pi-Por-\pi-A Type Porphyrin Small
Molecules for High Performance Organic Solar Cells ... 89

3.1 Introduction .. 89

3.2 Result and Discussion .. 93

3.3 Conclusion .. 112

3.4 Experimental Part .. 113
5.2 Results and Discussion ... 167

5.2.1 Photovoltaic Performance ... 175

5.3 Conclusion ... 187

5.4 Experimental Section ... 188

5.4.1 The details for device fabrications, characterization of compounds, can be found in Experimental Section in Chapter 7 ... 188

5.4.2 Synthesis .. 188

5.5 Reference ... 200

Chapter 6 Co(OH)$_2$ modified CdS Core/Shell Nanowires for Highly effective and Stable Visible Light Photocatalytic H$_2$ Production ... 202

6.1 Introduction ... 202

6.1.1 Structure and Operation Principle ... 203

6.1.2 Materials for Photocatalytic Water Splitting 207

6.2 Motivation and Aim of The Project .. 215

6.3 Experimental section ... 218

6.3.1 Sample Preparation ... 218

6.3.2 Characterization ... 219

6.3.3 Photocatalytic Hydrogen Production 221
6.4 Results and discussion ..222

6.4.1 XRD and TEM ..224

6.4.2 UV-Vis diffuse reflection spectra227

6.4.3 BET surface areas and pore size distributions228

6.4.4 XPS analysis ...230

6.4.5 Photocatalytic activity ..230

6.5 Conclusions ...237

6.6 References ...238

Chapter 7 Characterization and Conclusions243

7.1 Experimental Section ...243

7.2 Characterization of Targeting Molecules247

7.3 Conclusions and Prospect ..263

7.4 Reference ...267

List of Publishes ..269

CURRICULUM VITAE ..270