Abstract

The elderly living in smart homes can have their daily movement recorded and analyzed. Given the fact that different elders can have their own living habits, a methodology that can automatically identify their daily activities and discover their daily routines will be useful for better elderly care and support. In this thesis research, we focus on developing data mining algorithms for automatic detection of behavioral patterns from the trajectory data of an individual for activity identification, daily routine discovery, and activity prediction.

The key challenges for the human activity analysis include the need to consider longer-range dependency of the sensor triggering events for activity modeling and to capture the spatio-temporal variations of the behavioral patterns exhibited by human. We propose to represent the trajectory data using a behavior-aware flow graph which is a probabilistic finite state automaton with its nodes and edges attributed with some local behavior-aware features. Subflows can then be extracted from the flow graph using the kernel k-means as the underlying behavioral patterns for activity identification. Given the identified activities, we propose a novel nominal matrix factorization method under a Bayesian framework with Lasso to extract highly interpretable daily routines. To better take care of the variations of activity durations within each daily routine, we further extend the Bayesian framework with a Markov jump process as the prior to incorporate the shift-invariant property into the model.

For empirical evaluation, the proposed methodologies have been compared with a number of existing activity identification and daily routine discovery methods based
on both synthetic and publicly available real smart home data sets with promising results obtained. In the thesis, we also illustrate how the proposed unsupervised methodology could be used to support exploratory behavior analysis for elderly care.

Keywords: Human activity identification, daily routine discovery, nominal matrix factorization, Bayesian inference, Markov jump process.
Table of Contents

Declaration i

Abstract ii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1
 1.1 Smart home and data mining for assisted living 1
 1.2 Unsupervised learning for elderly mobility and daily routine analysis . 2
 1.3 Thesis organization . 6

Chapter 2 Related work 7
 2.1 Process mining . 8
 2.2 Activity modeling . 9
 2.3 Daily routine discovery . 10
 2.4 Markov jump process . 11
 2.5 CASAS smart home test bed . 11

Chapter 3 Elderly mobility analysis based on behavior-aware flow graph modeling 13