Abstract

Kernel-based meshless methods for approximating functions and solutions of partial differential equations have many applications in engineering fields. As only scattered data are used, meshless methods using radial basis functions can be extended to complicated geometry and high-dimensional problems. In this thesis, kernel-based least-squares methods will be used to solve several direct and inverse problems.

In chapter 2, we consider discrete least-squares methods using radial basis functions. A general ℓ²-Tikhonov regularization with W^m_2-penalty is considered. We provide error estimates that are comparable to kernel-based interpolation in cases in which the function being approximated is within and is outside of the native s-space of the kernel. These results are extended to the case of noisy data. Numerical demonstrations are provided to verify the theoretical results. In chapter 3, we apply kernel-based collocation methods to elliptic problems with mixed boundary conditions. We propose some weighted least-squares formulations with different weights for the Dirichlet and Neumann boundary collocation terms. Besides fill distance of discrete sets, our weights also depend on three other factors: proportion of the measures of the Dirichlet and Neumann boundaries, dimensionless volume ratios of the boundary and domain, and kernel smoothness. We determine the dependencies of these terms in weights by different numerical tests. Our least-squares formulations can be proved to be convergent at the $H^2(\Omega)$ norm. Numerical experiments in two and three dimensions show that we can obtain desired convergent results under different boundary conditions and different domain shapes. In chapter 4, we use a kernel-based least-squares method to solve ill-posed Cauchy problems for elliptic partial differential equations. We construct stable methods for these inverse problems. Numerical approximations to solutions of elliptic Cauchy problems are formulated as solutions of nonlinear least-squares problems with quadratic inequality constraints. A convergence analysis with respect to noise levels and fill distances of data points is provided, from which a Tikhonov regularization strategy is obtained. A nonlinear algorithm is proposed to obtain stable solutions of the resulting nonlinear problems.
Numerical experiments are provided to verify our convergence results. In the final chapter, we apply meshless methods to the Gierer-Meinhardt activator-inhibitor model. Pattern transitions in irregular domains of the Gierer-Meinhardt model are shown. We propose various parameter settings for different patterns appearing in nature and test these settings on some irregular domains. To further simulate patterns in reality, we construct different kinds of domains and apply proposed parameter settings on different patches of domains found in nature.

Keywords: Meshless, Kansa method, Kernel-based least-squares methods, Cauchy problems, Pattern formations, Gierer-Meinhardt model
Table of Contents

Declaration i
Abstract ii
Acknowledgements iv
Table of Contents v

Chapter 1 Introduction 1
 1.1 Radial basis functions .. 1
 1.2 Error estimations for kernel interpolation 4
 1.3 Least-squares collocation methods for elliptic PDEs with Dirichlet
 boundary condition ... 6
 1.4 Thesis overview ... 10

Chapter 2 Discrete least-squares radial basis functions approximations 13
 2.1 Introduction .. 13
 2.2 Stability of discrete least-squares problems 15
 2.3 Error estimates .. 18
 2.3.1 Noisy data .. 21
 2.4 Numerical examples .. 23
 2.5 Conclusion .. 29

Chapter 3 Weighted least-squares collocation methods for elliptic PDEs with
 mixed boundary conditions 30
3.1 Introduction .. 30
3.2 Problems and formulations 32
 3.2.1 Weighted least-squares formulations and the convergence theorem 34
 3.2.2 General formulas for least-squares weights 35
 3.2.3 Identifying the least-squares weights 38
3.3 Numerical experiments 39
 3.3.1 Convergence for small h_Z and large m 40
 3.3.2 Convergence under different mixed boundary conditions 41
 3.3.3 Convergence in thin domains 44
 3.3.4 Three dimensional examples 46
3.4 Conclusion .. 49

Chapter 4 Collocation methods of Cauchy problems for elliptic operators via conditional stability 56
4.1 Introduction .. 56
4.2 Reconstruction method and error analysis 58
 4.2.1 Cauchy Problems 58
 4.2.2 Kernels and native space 60
 4.2.3 Discrete solution with exact Cauchy data and error analysis . 61
 4.2.4 Discrete solution with noisy Cauchy data and error analysis . 67
4.3 Numerical algorithm .. 70
4.4 Numerical experiments 73
 4.4.1 Robustness of the proposed solver 75
 4.4.2 Convergence with respect to δ and h_Z 77
 4.4.3 Comparison with other numerical methods 79

Chapter 5 Complex patterns by spatial varying parameters 85
5.1 Introduction .. 85
5.2 Turing instability .. 87
5.3 Meshless methods for pattern formations 89
5.4 Complex pattern formations by a spatially varying parameter . 92
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1</td>
<td>Pattern formations by a spatially constant parameter</td>
<td>92</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Mixed patterns of steady state, stripes and spots</td>
<td>93</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Patterns of variably sized spots</td>
<td>96</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Striped patterns with fixed direction</td>
<td>99</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Circular and semicircular patterns</td>
<td>101</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Irregular domains</td>
<td>106</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Values of bifurcation parameter</td>
<td>107</td>
</tr>
</tbody>
</table>

Curriculum Vitae

vii