ABSTRACT

Herba Siegesbeckiae (HS, Xixiancao in Chinese) is a commonly used traditional Chinese medicinal herb for treating inflammatory disorders such as arthritis and rheumatoid arthritis (RA). In ancient materia medica books, HS is recorded to be the aerial part of *Siegesbeckia pubescens* (SP) which is also the sole plant origin of HS in the 1963 edition of the Chinese Pharmacopeia (ChP). The aerial parts of *Siegesbeckia orientalis* (SO) and *Siegesbeckia glabrescens* (SG) have been included as two additional origins for HS in each edition of ChP since 1977. Likewise, the aerial parts of these three species are recorded as origins for HS in the Hong Kong Chinese Materia Medica Standards (HKCMMS). HS has been reported to exert anti-inflammatory effects by inhibiting the MAPKs and NF-κB pathways that are the components of Toll-like receptor 4 (TLR4) signaling. Until now, no chemical or pharmacological comparison among the three *Siegesbeckia* herbs has been conducted to answer the question whether the three herbs could all be used as HS origins. The role of TLR4 in the anti-inflammatory effect of HS has not been determined yet. This study aims to determine whether the aerial parts of SP, SO and SG can all be used as HS, and to explore the involvement of the TLR4 pathways in HS’s anti-arthritic action.

To determine whether the three *Siegesbeckia* plants can all serve as the origins of HS, we compared their fingerprint chromatograms and inhibitory effects on inflammatory mediators. Chemical analyses showed that the three species have different profiles, although they have common peaks in their fingerprint chromatograms. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) of the common peaks demonstrated that all samples of the three species tend to be species-dependently grouped and separated. Ten components contributing to the species discrimination were identified, of which 8 are long-chain fatty acids/esters, and 2 are darutoside and hythiemoside A. Inhibitory effects of the three species on NO production and IL-6 secretion in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages are different, with SG being the most and SP the least potent. These chemical and bioactivity assays support the notion that the three *Siegesbeckia* species cannot be equally used as the plant origins of HS.

To investigate the involvement of TLR4 signaling in the anti-inflammatory effect of HS, we evaluated the anti-arthritic effects of an ethanolic extract of HS (HS for short, the dried aerial part of SO) in rats with collagen-induced arthritis (CIA), and investigated the involvement of TLR4 signaling in the effects of HS in...
the CIA rats and RAW264.7 macrophages. Results showed that HS possesses anti-arthritis effects and has no observable adverse effects. *In vitro* and *in vivo* mechanistic studies reveal that HS’s therapeutic effects is at least partially attributed to its inhibitory action on the IRAK4/MAPKs/AP-1, IRAK4/MAPKs/NF-κB, IRAK4/PI3K/NF-κB and TRAF3/TBK1/IRF3 pathways. We further found that HS inhibits LPS-TLR4 binding. To find out the compound responsible for inhibiting LPS-TLR4 binding, we first identified chemicals in HS by UHPLC/Q-TOF-MS analysis. Subsequent simulated computational and experimental studies showed that ursolic acid is one of the main active components. These studies demonstrated the anti-arthritis activity, the TLR4-signaling-related mechanism of action, and the active compound of HS.

This work provides a chemical and pharmacological basis for determining whether the three *Siegesbeckia* genus herbs SP, SO and SG can all serve as the origins of HS; and also provides pharmacological justifications for the clinical application of HS in treating inflammatory disorders.
TABLE OF CONTENTS

DECLARATION ... i
ABSTRACT... ii
ACKNOWLEDGEMENTS.. iv
TABLE OF CONTENTS... v
LIST OF TABLES.. xi
LIST OF FIGURES .. xii
LIST OF ABBREVIATIONS.. xix
CHAPTER 1 INTRODUCTION .. 1
 1.1 Rheumatoid arthritis (RA) .. 1
 1.1.1 Pathophysiology of RA .. 1
 1.1.2 TLR4 in RA ... 1
 1.1.3 Pharmacologic therapies and side effect .. 6
 1.2 Herba Siegesbeckiae (HS) .. 8
 1.2.1 Traditional record ... 8
 1.2.2 Morphological features .. 11
 1.2.3 Chemical constituents .. 14
 1.2.4 Pharmacological properties ... 25
 1.3 Hypothesis ... 29
 1.4 Objectives .. 29
CHAPTER 2 COMPARISON OF THE CHEMICAL PROFILES AND
INFLAMMATORY MEDIATOR-INHIBITORY EFFECTS OF THREE
SIEGESBECKIA HERBS USED AS HS ... 30
 2.1 Abstract .. 30
 2.2 Introduction ... 32
 2.3 Materials and methods .. 32
 2.3.1 Reagents and materials .. 32
 2.3.2 Herbal preparation .. 34
2.3.3 HPLC analysis ... 41
2.3.4 UHPLC-QTOF-MS analysis .. 43
2.3.5 Bioassays ... 46
2.4 Results.. 47
 2.4.1 HPLC analysis ... 47
 2.4.2 UHPLC-QTOF-MS analysis .. 58
 2.4.3 Effects of representative samples for SO, SP and SG on inflammatory mediators ... 80
2.5 Discussion.. 86
2.6 Conclusions.. 88

CHAPTER 3 HS EXERTES ANTI-ARTHRITIC EFFECTS AND INHIBITS THE TLR4 SIGNALING PATHWAY IN CIA RATS ... 89
3.1 Abstract.. 89
3.2 Introduction... 91
3.3 Materials and methods .. 92
 3.3.1 Chemical and regents ... 92
 3.3.2. Herbal materials .. 92
 3.3.3 Preparation of HS .. 93
 3.3.4 HPLC analysis of HS ... 94
 3.3.5 Induction of CIA ... 95
 3.3.6 Animal treatment ... 95
 3.3.7 Macroscopic scoring of CIA ... 96
 3.3.8 Radiographic analysis .. 96
 3.3.9 Changes in body weight and food intake 97
 3.3.10 Determination of IL-1β, IL-6, TNF-α and MCP-1 in sera ... 97
 3.3.11 Western blot analyses .. 97
3.3.12 Statistical analysis .. 98
3.4 Results .. 98
 3.4.1 Quality control of HS .. 98
 3.4.2 HS improved clinical arthritic conditions in CIA rats .. 100
 3.4.3 HS improved food intake and reduced weight loss in CIA rats 102
 3.4.4 HS attenuated the radiographic damage of CIA rats .. 104
 3.4.5 HS decreased the secretion of inflammatory mediators regulated by transcription in TLR4 signaling pathway ... 106
 3.4.6 HS inhibited TLR4 signaling in CIA rats ... 108
3.5 Discussion .. 110
3.6 Conclusion .. 111

CHAPTER 4 HS INHIBITS THE PRODUCTION OF INFLAMMATORY MEDIATORS REGULATED BY AP-1, NF-KB AND IRF3 IN LIPOPOLYSACCHARIDE-STIMULATED RAW 264.7 CELLS .. 112
 4.1 Abstract ... 112
 4.2 Introduction ... 114
 4.3 Materials and methods ... 114
 4.3.1 Reagents and materials ... 114
 4.3.2. Herbal materials .. 115
 4.3.3 Cell culture ... 116
 4.3.4 Cell viability assay .. 116
 4.3.5 Enzyme-linked immunosorbent assay (ELISA) ... 117
 4.3.6. NO production measurement .. 117
 4.3.7. Real-time polymerase chain reaction analysis .. 117
 4.3.8. Western blotting .. 119
 4.3.9 Extraction of cytoplasmic and nuclear proteins ... 119
4.3.10 Immunofluorescence staining ... 120
4.3.11 Detection of LPS binding on cell surface .. 120
4.3.12 Detection of TLR4-MD2 complex on cell surface 121
4.3.13 Statistical analysis .. 121
4.4 Results and discussion .. 121
 4.4.1 HS decreased NO production in LPS-stimulated RAW264.7 cells 121
 4.4.2 HS decreased the production of pro-inflammatory mediators regulated by NF-κB ... 123
 4.4.3 HS inhibited NF-κB p65 phosphorylation and reduced nuclear levels of p65 and p50 in LPS-stimulated RAW264.7 cells 126
 4.4.4 HS inhibited phosphorylation of IκBα and IKK α/β in LPS-stimulated RAW264.7 cells ... 130
 4.4.5 HS inhibited production of MCP-1 and MIP-1α in LPS-stimulated RAW264.7 cells ... 132
 4.4.6 HS decreased the phosphorylation and nuclear levels of c-Jun and c-Fos in LPS-stimulated RAW264.7 cells 133
 4.4.7 HS inhibited the phosphorylation of MAPKs in LPS-stimulated RAW264.7 cells ... 137
 4.4.8 HS inhibited the phosphorylation of PI3K and Akt in LPS-stimulated RAW264.7 cells ... 140
 4.4.9 HS inhibited the degradation of IRAK4 and IRAK1 in LPS-stimulated RAW264.7 cells ... 142
 4.4.10 HS lowered protein levels of TRAF6 and phospho-TAK1 in LPS-stimulated RAW264.7 cells ... 144
4.4.11 HS inhibited the production of Rantes, the phosphorylation and nuclear level of IRF3 in LPS-stimulated RAW264.7 cells..........................146
4.4.12 HS down-regulated protein levels of TRAF3 and phospho-TBK1 in LPS-stimulated RAW264.7 cells...150
4.4.13 HS lowered mRNA levels of pro-inflammatory mediators regulated by NF-κB, AP-1 and IRF3...152
4.4.14 HS inhibited NO production and lowered mRNA levels of cytokines/chmokines in RAW 264.7 cells treated with MPLAs154
4.4.15 LPS diminished the effects of HS on the phosphorylation of three transcription factors in the TLR4 pathways...157
4.4.16 HS inhibited the interaction between LPS and TLR4...............161

4.5 Conclusion ..164

CHAPTER 5 IDENTIFICATION OF CHEMICAL COMPONENTS IN HS RESPONSIBLE FOR INHIBITING LPS BINDING TO TLR4-MD2..............166

5.1 Abstract...166
5.2 Introduction...168
5.3 Materials and methods ..169
 5.3.1 Reagents and materials ...169
 5.3.2 Herbal preparation ...169
 5.3.3 UHPLC-QTOF-MS analysis..169
 5.3.4 Target Preparation and Validation of Docking Method171
5.4 Results and Discussion ...172
 5.4.1 UHPLC-QTOF-MS analysis...172
 5.4.2 Molecular Docking Analyses of the identified chemical constituents187
5.4.3 Ursolic acid (URA) inhibited NO production in LPS-stimulated RAW 264.7 cells .. 192
5.4.4 URA inhibited the interaction between LPS and TLR4 194
5.4.5 Determination of the 3D structure of the TLR4-MD2-URA complex .. 197
5.4.6 Confirmation of the binding site of URA with TLR4-MD2 200
5.4.7 Analysis of the inhibition mechanism of URA to TLR4-MD2 203
5.5 Conclusion ... 205

CHAPTER 6 SUMMARIES, GENERAL DISCUSSION, CONCLUSION AND PROSPECTS OF THE RESEARCH ... 206
6.1 Summaries ... 206
6.2 General discussion and conclusion .. 208
6.3 Future plans .. 209
 6.3.1 Metabolic analyses ... 209
 6.3.2 Network pharmacology analyses .. 209
REFERENCES .. 210
PUBLICATIONS ... 228
CURRICULUM VITAE ... 229