Abstract

Advanced pancreatic cancer (APC) has a poor prognosis due to the high degree of resistance after systemic chemotherapy. Celastrol (CSL), a quinone methyl triterpenoid monomer extracted from Tripterygium wilfordii Hook F, exhibits superior antitumor activity on pancreatic cancer (PC) both in vitro and in vivo. In addition, CSL counteracts multiple mechanisms involved in multi-drug resistance (MDR) of PC cells. However, CSL induced toxicity to normal tissues (e.g. liver) is the major impediment to its clinical application. Thus, it is desirable to seek strategy to facilitate CSL selectively targeting PC tissues and simultaneously reducing its exposure to healthy tissues (e.g. liver).

Aptamers are single-stranded oligonucleotides which specifically recognize and bind to targets by distinct secondary or tertiary structures. Nucleolin, a protein overexpressed on the plasma membrane of PC cells than that of normal cells (e.g. liver cell), which shuttle between cell surface, cytoplasm and nucleus, work as a cell surface receptor. Nucleolin aptamer is an anti-proliferative G-rich oligonucleotide with high affinity and specificity to nucleolin, which has been proved to be safe in clinical research. Then, nucleolin aptamer, as a target moiety, provide an approach to facilitate CSL selectively targeting PC cells. Taken together, our hypothesis is that the nucleolin aptamer modification could facilitate the conjugated CSL selectively targeting pancreatic cancer cells to achieve higher antitumor activity and less liver toxicity.
In our study, CSL was conjugated to nucleolin aptamer to form Nucleolin Aptamer-Celastrol Conjugate (NACC). A CRO Aptamer-Celastrol conjugate (CACC) was also synthesized as a control for comparison. The water solubility of NACC was significantly higher than that of CSL. Then, the molecular weight of NACC was detected by ESI mass spectrum (MS). The anti-proliferative efficacy of NACC was higher than CSL in vitro. NACC could selectively bind to PANC-1 cells over normal liver cells. The cellular uptake of NACC by PANC-1 cell was stronger than CSL. Moreover, NACC could be taken up by PANC-1 cells mainly via macropinocytosis. Tissue distribution study revealed that NACC could selectively accumulate in pancreatic tumor tissue and reduce the distribution in liver in vivo. In addition, NACC demonstrated higher antitumor activity and less liver toxicity in vivo, compared with CSL and CACC.

The above results revealed that the nucleolin aptamer modification could facilitate the conjugated CSL selectively targeting PC cells to achieve higher antitumor activity and less liver toxicity.
Table of Contents

DECLARATION .. i
Abstract ... ii
Acknowledgement .. iv
Table of Contents .. vi
Lists of Figures and Tables ... x
List of Abbreviation .. xi
Chapter 1 Background .. 1
 1.1 The epidemiology of pancreatic cancer and the major challenges 1
 1.2 The causes of chemotherapy tolerance in pancreatic cancer and the related molecular mechanisms ... 3
 1.2.1 P-glycoprotein and MDR in pancreatic cancer 4
 1.2.2 NF-kB pathway and MDR in pancreatic cancer 7
 1.2.3 HSP90 and MDR in pancreatic cancer 9
 1.2.4 Tumor angiogenesis and MDR in pancreatic cancer 12
 1.3 Celastrol as a potential drug for treatment of pancreatic cancer and the impediment to its clinical application .. 15
 1.4 The application of aptamer in tumor targeted therapy 18
 1.5 Nucleolin aptamer as a moiety to target pancreatic cancer 21
 1.6 Research Hypothesis ... 22
Chapter 2 Materials and Methods ... 24
 2.1 Materials for chemical synthesis ... 24
 2.2 Preparative high performance liquid chromatography (Pre-HPLC) analysis for purifying compounds ... 25
 2.3 Nuclear magnetic resonance (NMR) analysis for indentifying compounds .. 25
 2.4 Reversed-phase high performance liquid chromatography (RP-HPLC) analysis for indentifying compounds ... 26
2.5 Cell culture ... 26
2.6 Cell proliferation study ... 27
2.7 Animal handing .. 27
2.8 Xenograft tumor model of pancreatic cancer 28
2.9 Flow cytometry .. 28
2.10 Cellular uptake pathways ... 29
2.11 In vivo injection of Microfil and Micro CT 30
2.12 Western blot analysis .. 30
2.13 Tissues and cellular distribution 31
2.14 Blood biochemical analysis .. 32
2.15 Histological analysis .. 32
2.16 Statistical analysis ... 32

Chapter 3 The effect of modification on the carboxylic acid group on the antitumor activity of celastrol ... 33
3.1 Aim .. 33
3.2 Design ... 33
3.3 Results ... 34

Chapter 4 The synthesis and characterization of Nucleolin Aptamer-Celastrol Conjugate (NACC) ... 36
4.1 Aim .. 36
4.2 Synthesis of the celastrol derivative 36
 4.2.1 Experimental design .. 36
 4.2.2 Results .. 37
4.3 Synthesis process of Nucleolin Aptamer-Celastrol Conjugate (NACC) ... 38
 4.3.1 Experimental design .. 38
 4.3.2 Results .. 39
4.4 Synthesis process of the CRO Aptamer-Celastrol Conjugate (CACC) ... 40
 4.4.1 Experimental design .. 40
 4.4.2 Results .. 41
4.5 The water solubility and the stability of the NACC in vitro 42
4.5.1 Experimental design ... 42
4.5.2 Result .. 42

Chapter 5 The effect of the nucleolin aptamer modification on the cytotoxicity of
the conjugated CSL in NACC in vitro .. 44
 5.1 Aim .. 44
 5.2 Experimental design ... 44
 5.3 Results .. 44

Chapter 6 The effect of the nucleolin aptamer modification on the cellular uptake
and the cellular internalization of NACC in vitro 46
 6.1 Aim .. 46
 6.1.1 To investigate the selectivity of NACC to pancreatic cells and the
 cellular uptake in vitro .. 46
 6.1.2 To investigate the mechanisms of cellular uptake of NACC by
 pancreatic cancer cells in vitro ... 46
 6.2 Experimental design ... 46
 6.3 Results .. 47

Chapter 7 The effect of the nucleolin aptamer modification on the distribution of
NACC in a xenograft mouse model of human pancreatic cancer 52
 7.1 Aim .. 52
 7.2 Experimental design ... 52
 7.3 Results .. 53

Chapter 8 The effect of the nucleolin aptamer modification on the antitumor
activity of the NACC in a xenograft mouse model of human pancreatic cancer .. 57
 8.1 Aim .. 57
 8.1.1 To investigate the antitumor efficacy of NACC in xenograft tumor
 model of pancreatic cancer .. 57
 8.1.2 To investigate the effect of NACC on angiogenesis of tumor
 microenvironment ... 57
 8.1.3 To investigate the effect of NACC on expression level of NF-κB,
 HSP 90 and P-glycoprotein in tumor tissue 57
8.1.4 To investigate the effect of NACC on survival of tumor bearing mice.

8.2 Experimental design

8.3 Results

Chapter 9 The effect of the nucleolin aptamer modification on the liver toxicity of NACC

9.1 Aim

9.2 Experimental design

9.3 Result

Chapter 10 Discussion

References

CURRICULUM VITAE